Skip to main content

Separation Sensitive Kinetic Separation Structures for Convex Polygons

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2098))

Abstract

We extend the kinetic data structure for collision detection between moving simple polygons introduced in [14] to incorporate a hierarchical representation of convex chains. This permits us to define and maintain an adaptive hierarchical outer approximation for convex polygons. This representation can be exploited to give separation sensitive complexity bounds for kinetic collision detection comparable to those of Erickson et al. [11] who deal with pairs of convex polygons. More importantly, it forms the bases of a more general representation, developed in a companion paper, that applied to collections of general (not necessarily convex) polygonal objects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. K. Agarwal, J. Basch, M. de Berg, L. J. Guibas, and J. Hershberger. Lower bounds for kinetic planar subdivisions. In Proc. 15th ACM Sympos. Comp. Geom., pages 247–254, 1999.

    Google Scholar 

  2. P. K. Agarwal, J. Basch, L. J. Guibas, J. Hershberger, and L. Zhang. Deformable free space tilings for kinetic collision detection. In Proc. 5th Workshop Algorithmic Found. Robotics, 2000.

    Google Scholar 

  3. J. Basch, J. Erickson, L. J. Guibas, J. Hershberger, and L. Zhang. Kinetic collision detection for two simple polygons. In Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, pages 102–111, 1999.

    Google Scholar 

  4. J. Basch, L. Guibas, and J. Hershberger. Data structures for mobile data. In Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, pages 747–756, 1997.

    Google Scholar 

  5. B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions. J. ACM, 34(1):1–27, Jan. 1987.

    Article  MathSciNet  Google Scholar 

  6. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, MA, 1990.

    Google Scholar 

  7. D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri. Implicitly searching convolutions and computing depth of collision. In Proc. 1st Annu. SIGAL Internat. Sympos. Algorithms, volume 450 of Lecture Notes Comput. Sci., pages 165–180. Springer-Verlag, 1990.

    Google Scholar 

  8. D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection. Theoret. Comput. Sci., 27(3):241–253, Dec. 1983.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. P. Dobkin and D. G. Kirkpatrick. A linear algorithm for determining the separation of convex polyhedra. J. Algorithms, 6:381–392, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed polyhedra–A unified approach. In M. S. Paterson, editor, Automata, Languages and Programming, 17th International Colloquium, volume 443 of Lecture Notes in Computer Science, pages 400–413, Warwick University, England, 16–20 July 1990. Springer-Verlag.

    Chapter  Google Scholar 

  11. J. Erickson, L. Guibas, J. Stolfi, and L. Zhang. Separation-sensitive collision detection for convex objects. In Proc. 10th ACM-SIAM Sympos, Discrete Algorithms, pages 327–336, 1999.

    Google Scholar 

  12. L. Guibas, J. Snoeyink, and L. Zhang. Compact voronoi diagrams for moving convex polygons. In To appear Proc. 7th Scandinavian Workshop on Algorithm Theory, 2000.

    Google Scholar 

  13. L. J. Guibas. Kinetic data structures: A state of the art report. In Proc. 3rd Workshop Algorithmic Found. Robotics, pages 191–209, 1998.

    Google Scholar 

  14. D. Kirkpatrick, J. Snoeyink, and B. Speckmann. Kinetic collision detection for simple polygons. In Proc. 16th ACM Sympos. on Comp. Geom., pages 322–330, 2000.

    Google Scholar 

  15. D. Kirkpatrick and B. Speckmann. Separation sensitive kinetic collision detection for simple polygons. In preparation.

    Google Scholar 

  16. M. McAllister, D. Kirkpatrick, and J. Snoeyink. A compact piecewise-linear voronoi diagram for convex sites in the plane. Discrete Comp. Geom., 15:73–105, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. M. Mount. Intersection detection and separators for simple polygons. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 303–311, 1992.

    Google Scholar 

  18. S. Suri. Minimum link paths in polygons and related problems. PhD thesis, Dept. Comp. Sci., Johns Hopkins Univ., 1987.

    Google Scholar 

  19. G. T. Toussaint. Shortest path solves translation separability of polygons. Technical Report SOCS-85.27, School Comput. Sci., McGill Univ., 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirkpatrick, D., Speckmann, B. (2001). Separation Sensitive Kinetic Separation Structures for Convex Polygons. In: Akiyama, J., Kano, M., Urabe, M. (eds) Discrete and Computational Geometry. JCDCG 2000. Lecture Notes in Computer Science, vol 2098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47738-1_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-47738-1_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42306-5

  • Online ISBN: 978-3-540-47738-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics