Skip to main content

A Cost–Effective Hardware Link Scheduling Algorithm for the Multimedia Router (MMR)

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2094))

Abstract

The primary objective of the Multimedia Router (MMR) project is the design and implementation of a compact router optimized for multimedia applications. The router is targeted for use in cluster and LAN interconnection networks,whic h offer different constraints and therefore differing router solutions than WANs. One of the key elements in order to achieve these goals is the scheduling algorithm. In a previous paper,the authors have proposed a link/switch scheduling algorithm capable of providing different QoS guarantees to flows as needed. This work focuses on the reduction of the hardware complexity necessary to implement such algorithm. A novel priority algorithm is presented,and its hardware complexity is compared to that of the original proposal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Chien, J.H. Kim,“Approaches to Quality of Service in High Performance Networks,” Proceedings of the Workshop on Parallel Computer Routing and Communication, Lecture Notes in Computer Science,Springer-Verlag,pp.1–19,June 1997.

    Google Scholar 

  2. B. Caminero, C. Carrión, F. J. Quiles, J. Duato,and S. Yalamanchili,“Tuning buffer size in the Multimedia Router (MMR),” To appear in Proceedings of the Workshop on Communication Architecture for Clusters,held in conjunction with the 2001 International Parallel and Distributed Processing Symposium (IPDPS’2000),April 2001.

    Google Scholar 

  3. J. Duato, S. Yalamanchili, M.B. Caminero, D. Love,and F.J. Quiles,“MMR: A high-performance multimedia router. Architecture and design trade-offs,” Proceedings of the 5th Symposium on High Performance Computer Architecture (HPCA-5), pp. 300–309,January 1999.

    Google Scholar 

  4. D. Garcia, D. Watson,“ServerNet II,” Proceedings of the Workshop on Parallel Computer Routing and Communication,pp. 119–136,June 1996.

    Google Scholar 

  5. P. T. Gaughan and S. Yalamanchili,“Adaptive routing protocols for hypercube interconnection networks,” IEEE Computer,vol. 26,no. 5,pp. 12–23,Ma y 1993.

    Google Scholar 

  6. P. T. Gaughan and S. Yalamanchili,“A family of fault-tolerant routing protocols for direct multiprocessor networks,” IEEE Transactions on Parallel and Distributed Systems,vol. 6,no. 5,pp. 482–497,Ma y 1995.

    Article  Google Scholar 

  7. D. Pendery, J. Eunice,“InfiniBand Architecture: Bridge Over Troubled Waters,” Research Note,available from the web page: http://www.infinibandta.org

  8. M. J. Karol, M. G. Hluchyj and S. P. Morgan,“ Input versus output queuing on a space division packet switch,” IEEE Transactions on Communications,December, 1987.

    Google Scholar 

  9. M. G. H. Katevenis,et al.,“ATLAS I: A single-chip ATM switch for NOWs,” Proceedings of the Workshop on Communications and Architectural Support for Network-based Parallel Computing,February 1997.

    Google Scholar 

  10. J.H. Kim,“Bandwidth and latency guarantees in low-cost,high-performance networks,” Ph. D. Thesis,Department of Computer Sciences,University of Illinois at Urbana-Champaign,1997.

    Google Scholar 

  11. D. Love, S. Yalamanchili, J. Duato, M.B. Caminero,and F.J. Quiles,“Switch Scheduling in the Multimedia Router (MMR),” Proceedings of the 2000 International Parallel and Distributed Processing Symposium (IPDPS’2000),May 2000.

    Google Scholar 

  12. M. Perkins and P. Skelly,“A hardware MPEG clock recovery experiment for variable bit rate video transmission,” ATM Forum, ATM94-0434,May 1994.

    Google Scholar 

  13. M Schwartz and D. Beaumont,“Quality of service requirements for audio-visual multimedia services,” ATM Forum, ATM94-0640,July,1994.

    Google Scholar 

  14. “Generic coding of moving pictures and associated audio,” Recommendation H.262,Draft International Standard ISO/IEC 13818-2,March,1994.

    Google Scholar 

  15. “Synopsys DesignWare Guide,” version 1998.02.

    Google Scholar 

  16. “Synopsys Reference Manual,” version 1998.02.

    Google Scholar 

  17. “IEEE Standard VHDL; Language Reference Manual,” IEEE STD1076, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caminero, M.B., Carrión, C., Quiles, F.J., Duato, J., Yalamanchili, S. (2001). A Cost–Effective Hardware Link Scheduling Algorithm for the Multimedia Router (MMR). In: Networking — ICN 2001. ICN 2001. Lecture Notes in Computer Science, vol 2094. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47734-9_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-47734-9_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42303-4

  • Online ISBN: 978-3-540-47734-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics