Advertisement

Full Dissolution and Crystallization of Polyamide 6 and Polyamide 4.6 in Water and Ethanol

  • Marjoleine G.M. Wevers
  • Vincent B.F. Mathot
  • Thijs F.J. Pijpers
  • Bart Goderis
  • Gabriel Groeninckx
Part of the Lecture Notes in Physics book series (LNP, volume 714)

Abstract

The full dissolution and crystallization of PA6 in water and PA4.6 in water and ethanol under pressure are described. Dissolution of PA6 in water is very fast and effective: it is completed during heating at 5°C/min in a DSC without stirring. It drastically lowers subsequent crystallization and melting temperatures. The maximum depression of the crystallization and melting temperatures is approximately 60°C.

Keywords

Molar Mass Distribution WAXD Pattern Full Dissolution Oligomer Fraction Solvent Accessible Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Frank, P. Frübing, P. Pissis, J Polym Sci B Polym Phys 34, 1853 (1996).CrossRefGoogle Scholar
  2. [2]
    K. Kawasaki, Y. Sekita, J Polym Sci A 3, 2437 (1964).Google Scholar
  3. [3]
    J. L. Hutchison, N. S. Murthy, E. T. Samulski, Macromolecules 29, 5551 (1996).CrossRefGoogle Scholar
  4. [4]
    B. Knopp, U. W. Suter, Macromolecules 30, 6114 (1997).CrossRefGoogle Scholar
  5. [5]
    N. S. Murthy, M. K. Akkapeddi, W. J. Orts, Macromolecules 31, 142 (1998).CrossRefGoogle Scholar
  6. [6]
    C. A. Fyfe, L. H. Randall, N. E. Burlinson, J Polym Sci A Polym Chem 31, 159 (1993).CrossRefGoogle Scholar
  7. [7]
    L. P. Razumovskii, V. S. Markin, G. Y. Zaikov, Polym Sci USSR 27, 751 (1985).CrossRefGoogle Scholar
  8. [8]
    J. Aerts, et al., Thechnische Thermoplaste, Polyamide part 3 (Hanser Verlag: München, 1998), chap. 3, pp. 549–638.Google Scholar
  9. [9]
    H. K. Reimschuessel, J Polym Sci Polym Chem 16, 1229 (1978).Google Scholar
  10. [10]
    N. S. Murthy, M. Stamm, J. P. Sibilia, S. Krimm, Macromolecules 22, 1261 (1989).CrossRefGoogle Scholar
  11. [11]
    G. J. Kettle, Polymer 18, 742 (1977).CrossRefGoogle Scholar
  12. [12]
    P. Adriaensens, et al., Polymer 42, 7943 (2001).CrossRefGoogle Scholar
  13. [13]
    N. Jia, H. A. Fraenkel, J Reinf Plast Compos 23, 729 (2004).CrossRefGoogle Scholar
  14. [14]
    K. Inoue, S. Hoshino, J Polym Sci Polym Phys 14, 1513 (1976).CrossRefGoogle Scholar
  15. [15]
    R. J. Hernandez, R. Gavara, J Polym Sci B Polym Phys 32, 2367 (1994).CrossRefGoogle Scholar
  16. [16]
    Y. P. Khanna, P. Han, E. D. Day, Polym Eng Sci 36, 1745 (1996).CrossRefGoogle Scholar
  17. [17]
    F. P. La Mantia, R. Scaffaro, Polym Degrad Stab 75, 473 (2002).CrossRefGoogle Scholar
  18. [18]
    Y. S. Papir, S. Kapur, C. E. Rogers, E. Baer, J Polym Sci A2 10, 1305 (1972).CrossRefGoogle Scholar
  19. [19]
    D. C. Prevorsek, R. H. Butler, H. K. Reimschuessel, J Polym Sci A2 9, 867 (1971).CrossRefGoogle Scholar
  20. [20]
    H. W. Starkweather, J Appl Polym Sci 2, 129 (1959).CrossRefGoogle Scholar
  21. [21]
    J. Hirschinger, H. Miura, K. H. Gardner, A. D. English, Macromolecules 23, 2153 (1990).CrossRefGoogle Scholar
  22. [22]
    V. M. Litvinov, J. P. Penning, Macromol Chem Phys 205, 1721 (2004).CrossRefGoogle Scholar
  23. [23]
    A. Koshimo, J Appl Polym Sci 9, 55 (1965).CrossRefGoogle Scholar
  24. [24]
    A. Koshimo, T. Tagawa, J Appl Polym Sci 9, 117 (1965).CrossRefGoogle Scholar
  25. [25]
    N. S. Murthy, W. J. Orts, J Polym Sci B Polym Phys 32, 2695 (1994).CrossRefGoogle Scholar
  26. [26]
    J. Pleštil, J. Baldrian, Y. M. Ostanevich, V. Y. Bezzabotnov, J Polym Sci B Polym phys 29, 509 (1991).CrossRefGoogle Scholar
  27. [27]
    N. S. Murthy, S. M. Aharoni, A. B. Szollosi, J Polym Sci Polym Phys 23, 2549 (1985).CrossRefGoogle Scholar
  28. [28]
    G. A. Campbell, J Polym Sci Polym Lett 7, 629 (1969).CrossRefGoogle Scholar
  29. [29]
    H. M. Heuvel, R. Huisman, J Appl Polym Sci 23, 713 (1981).CrossRefGoogle Scholar
  30. [30]
    K. Nagasubramanian, H. K. Reimschuessel, J Appl Polym Sci 17, 1663 (1973).CrossRefGoogle Scholar
  31. [31]
    R. Puffr, J. Šebenda, J Polym Sci C 16, 79 (1967).Google Scholar
  32. [32]
    H. W. Starkweather, J. R. Barkley, J Polym Sci Polym Phys 19, 1211 (1981).CrossRefGoogle Scholar
  33. [33]
    E. G. Chatzi, H. Ishida, J. L. Koenig, Appl Spectrosc 40, 847 (1986).CrossRefGoogle Scholar
  34. [34]
    M. Tsuruta, A.Koshimo, T. Tagawa, J Appl Polym Sci 9, 31 (1965).CrossRefGoogle Scholar
  35. [35]
    M. Tsuruta, A. Koshimo, J Appl Polym Sci 9, 39 (1965).CrossRefGoogle Scholar
  36. [36]
    A. Koshimo, J Appl Polym Sci 9, 81 (1965).CrossRefGoogle Scholar
  37. [37]
    M. F. J. Pijpers, V. B. F. Mathot, R. L. Scherrenberg, Kristallisatie- en smelttemperatuur depressie van polyamiden door water, methanol and andere oplosmiddelen onder verhoogde (damp)druk, Tech. Rep. RC95–12799, DSM Research (1995).Google Scholar
  38. [38]
    R. Korbee, A. V. Geenen, Patent No. WO 99/297467 pp. 1–16 (1999).Google Scholar
  39. [39]
    S. Rastogi, A. E. Terry, E. Vinken, Macromolecules 37, 8825 (2004).CrossRefGoogle Scholar
  40. [40]
    N. Kosaric, et al., Ulmann’s encyclopedia of industrial chemistry (Wiley-VCH Verlag GmbH:Weinheim, 2000 electronic release), chap. Ethanol-physical properties, 6th edn.Google Scholar
  41. [41]
    E. U. Frank, G. Wiegand, N. Dahmen, Ullmann’s encyclopedia of industrial chemistry (Wiley-VCH Verlag GmbH:Weinheim, 2000 electronic release), chap. Water at high pressure and temperature, 6th edn.Google Scholar
  42. [42]
    V. B. F. Mathot, Calorimetry and thermal analysis of polymers (Hanser Publishers: Münich, 1994), Chap. 5, pp. 105–167.Google Scholar
  43. [43]
    V. Mathot, T. Pijpers, M. Steinmetz, G. van der Plaats, Proceedings of the 25th North American Thermal Analysis Society Conference (McClean: Virginia, 1997), p. 64. The temperature dependent crystallinity software program which runs under Windows and is not instrument specific, has been developed by DSM Research BV and Anatech BV jointly, and is availabe trough PerkinElmer.Google Scholar
  44. [44]
    http://web.utk.edu/~athas/databank/intro.html.Google Scholar
  45. [45]
    D. R. Holmes, C. W. Bunn, D. J. Smith, J Polym Sci 17, 159 (1955).CrossRefGoogle Scholar
  46. [46]
    H. Arimoto, M. Ishibashi, M. Hirai, Y. Chatani, J Polym Sci A 3, 317 (1965).Google Scholar
  47. [47]
    A. Ziabicki, Koll-Z 167, 132 (1959).CrossRefGoogle Scholar
  48. [48]
    L. G. Roldan, H. S. Kaufman, J Polym Sci B Polym Lett 1, 603 (1963).CrossRefGoogle Scholar
  49. [49]
    F. Auriemma, V. Petraccone, L. Parravicini, P. Corradini, Macromolecules 30, 7554 (1997).CrossRefGoogle Scholar
  50. [50]
    J. Gianchandani, J. E. Spruiell, E. S. Clark, J Appl Polym Sci 27, 3527 (1982).CrossRefGoogle Scholar
  51. [51]
    J. P. Parker, P. H. Lindenmeyer, J Appl Polym Sci 21, 821 (1977).CrossRefGoogle Scholar
  52. [52]
    R. Tol, V. B. F. Mathot, H. Reynaers, B. Goderis, G. Groeninckx, Polymer 46, 2966 (2005).CrossRefGoogle Scholar
  53. [53]
    G. Gurato, A. Fichera, F. Z. Grandi, R. Zannetti, P. Canal, Makromol Chem 175, 953 (1974).CrossRefGoogle Scholar
  54. [54]
    V. Malta, G. Cojazzi, A. Fichera, D. Ajo, R. Zanetti, Eur Polym J 15, 765 (1979).CrossRefGoogle Scholar
  55. [55]
    J. Ibarretxe Uriguen, L. Bremer, V. Mathot, G. Groeninckx, Polymer 45, 5961 (2004).CrossRefGoogle Scholar
  56. [56]
    N. S. Murthy, S. A. Curran, S. M. Aharoni, H. Minor, Macromolecules 24, 3215 (1991).CrossRefGoogle Scholar
  57. [57]
    http://www.cryst.chem.uu.nl/platon/pl000000.html.Google Scholar
  58. [58]
    http://www.cryst.chem.uu.nl/platon/pl000302.html.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Marjoleine G.M. Wevers
    • 1
    • 2
    • 3
  • Vincent B.F. Mathot
    • 2
    • 3
  • Thijs F.J. Pijpers
    • 2
  • Bart Goderis
    • 2
  • Gabriel Groeninckx
    • 2
  1. 1.DSM ResearchGeleenThe Netherlands
  2. 2.Laboratory of Macromolecular Structural Chemistry, Division of Molecular and Nanomaterials, Department of ChemistryKatholieke Universiteit LeuvenHeverleeBelgium
  3. 3.SciTeGeleenThe Netherlands

Personalised recommendations