Advertisement

Precursor of Primary Nucleation in Isotactic Polystyrene Induced by Shear Flow

  • Toshiji Kanaya
  • Yoshiyuki Takayama
  • Yoshiko Ogino
  • Go Matsuba
  • Koji Nishida
Part of the Lecture Notes in Physics book series (LNP, volume 714)

Abstract

We performed depolarized light scattering (DPLS) and polarized optical microscope (POM) measurements on the structure formation process or the crystallization process of isotactic polystyrene (iPS) under shear flow below and above the nominal melting temperature Tm. It was found in the DPLS measurements that an anisotropic oriented structure on a μm scale was formed even above the nominal melting temperature. This was also confirmed by POM measurements. This oriented structure must be a precursor of primary nucleation, at least, in the early stage of the formation process. The structure and its formation mechanism are discussed based on the analysis of the DPLS data.

Keywords

Polarize Optical Microscope Oriented Structure Anisotropic Scattering Equilibrium Melting Temperature Primary Nucleation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Jerschow, H. Janeschitz-Kriegel: Int. Polym. Process 12, 72 (1997)Google Scholar
  2. [2]
    R. H. Somani, L. Young, B. H. Hsiao, P. K. Agarwal, H. A. Fruitwala, A. H. Tsuo: Macromolecules 35, 9096 (2002)CrossRefGoogle Scholar
  3. [3]
    L. Yang, R. H. Somani, I. Sics, B. H. Hsiao, R. Kolb, H. Fruitwala, C. Ong: Macromolecules 37, 4845 (2004)CrossRefGoogle Scholar
  4. [4]
    G. Kumaraswamy, A. M. Issaian, J. A. Kornfield: Macromolecules 32, 7537 (1999)CrossRefGoogle Scholar
  5. [5]
    G. Kumaraswamy, R. K. Verma, A. M. Issaian, P. Wang, J. A. Kornfield, F. Yeh, B. Hsiao, R. H. Olley: Polymer 41, 8934 (2000)CrossRefGoogle Scholar
  6. [6]
    G. Kumaraswamy, J. A. Kornfield, F. Yeh, B. Hsiao: Macromolecules 35, 1762 (2002)CrossRefGoogle Scholar
  7. [7]
    K. Nogami, S. Murakami, K. Katayama, K. Kobayashi: Bull. Inst. Chem. Res., Kyoto Univ. 55, 227 (1977)Google Scholar
  8. [8]
    N. V. Pogodina, S. K. Siddiquee, J. W. V. Egmond, H. H. Winter: Macromolecules 32, 1167 (1999)CrossRefGoogle Scholar
  9. [9]
    N. V. Pogodina, V. P. Lavrenko, S. Srinivas, H. H. Winter: Polymer 42, 9031 (2001)CrossRefGoogle Scholar
  10. [10]
    A. Elmoumni, H. H. Winter, A. J. Waddon, H. Fruitwala: Macromolecules 36, 6453 (2003)CrossRefGoogle Scholar
  11. [11]
    R. H. Somani, L. Yang, B. S. Hsiao: Physica A 304, 145 (2002)CrossRefGoogle Scholar
  12. [12]
    M. Shibayama, S. Nomura, T. Hashimoto, E. L. Thomas: J. Appl. Phys. 64, 4188 (1989)CrossRefGoogle Scholar
  13. [13]
    P. J. Lemstra, T. Kooistra, G. J. Challa: Polym. Sci, Part A-2 10, 823 (1972)CrossRefGoogle Scholar
  14. [14]
    J. Petermann, H. Gleiter; Polym. Lett. Ed. 15, 649(1977)CrossRefGoogle Scholar
  15. [15]
    M. Al-Hussein, G. Strobl: Macromolecules 35, 1672 (2002)CrossRefGoogle Scholar
  16. [16]
    For example, A. Keller, J. W. H. Kolnaar. In: ed. by H. E. H. Meijer: Processing of Polymers.(New York: VCH; 1997) pp 189–268Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Toshiji Kanaya
    • 1
  • Yoshiyuki Takayama
    • 1
  • Yoshiko Ogino
    • 1
  • Go Matsuba
    • 1
  • Koji Nishida
    • 1
  1. 1.Institute for Chemical ResearchKyoto UniversityUjiJapan

Personalised recommendations