Advertisement

Kinetic Theory of Crystal Nucleation Under Transient Molecular Orientation

  • Leszek Jarecki
Part of the Lecture Notes in Physics book series (LNP, volume 714)

Abstract

Kinetic theory of crystal nucleation is proposed for flexible chain polymers subjected to flow deformation with transient molecular deformation and orientation. Significant transient effects in the kinetics of oriented nucleation are expected in melt processing involving high deformation rates, like in high-speed melt spinning.

Keywords

Elongation Rate Chain Extension Chain Segment Crystal Nucleation Nucleation Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Blim: Effects of spinning temperature on the structure and dynamics of melt spinning of polyester fibres. PhD Thesis, Institute of Fundamental Technological Research, Warsaw (2004)Google Scholar
  2. [2]
    A. Ziabicki: Fundamentals of Fiber Formation (J. Wiley, London 1976)Google Scholar
  3. [3]
    A. Ziabicki, H. Kawai: High-Speed Fiber Spinning (J. Wiley, New York 1985)Google Scholar
  4. [4]
    J.A. Cuculo, P.A. Tucker, G.Y. Chen, C.Y. Lin, J. Denton: Intern. Polymer Processing 47, 85 (1989)Google Scholar
  5. [5]
    K. Kobayashi, T. Nagasawa: J. Macromol. Sci. Phys. B4, 331 (1970)Google Scholar
  6. [6]
    L. Jarecki: Effects of molecular orientation on thermodynamics of polymer crystallization. PhD Thesis, Institute of Fundamental Technological Research, Warsaw (1974)Google Scholar
  7. [7]
    A. Ziabicki, L. Jarecki: The theory of molecular orientation and oriented crystallization in high-speed spinning. In: High-Speed Fiber Spinning, ed by A. Ziabicki, H. Kawai (J. Wiley, New York 1985) pp 225–269Google Scholar
  8. [8]
    A. Ziabicki, L. Jarecki, A. Wasiak: Comput. Theoret. Polymer Sci. 8, 143 (1988)CrossRefGoogle Scholar
  9. [9]
    L. Jarecki, A. Ziabicki, A. Blim: Comput. Theoret. Polymer Sci. 10, 63 (2000)CrossRefGoogle Scholar
  10. [10]
    L. Jarecki, A. Ziabicki: Polymer 43, 2549 (2002)CrossRefGoogle Scholar
  11. [11]
    L. Jarecki, A. Ziabicki: Polymer 43, 4063 (2002)CrossRefGoogle Scholar
  12. [12]
    A. Ziabicki, L. Jarecki, A. Schoene: Polymer 45, 5735 (2004)CrossRefGoogle Scholar
  13. [13]
    A. Schoene, A. Ziabicki, L. Jarecki: Polymer 46, 3927 (2005)CrossRefGoogle Scholar
  14. [14]
    A. Peterlin: Polymer Lett. 4, 287 (1966)CrossRefGoogle Scholar
  15. [15]
    A. Cohen: Rheol. Acta 30, 270 (1991)CrossRefGoogle Scholar
  16. [16]
    W. Kuhn, F. Grün: Kolloid Z. 95, 172 (1941)Google Scholar
  17. [17]
    W.R Krigbaum, R.J. Roe: J. Polymer Sci. A2, 4391 (1964)Google Scholar
  18. [18]
    J.I. Lauritzen, E.A. DiMarzio, E. Passaglia: J. Chem. Phys. 45, 4444 (1966)CrossRefGoogle Scholar
  19. [19]
    K. Kobayashi, T. Nagasawa: J. Macromol. Sci. Phys. B4, 331 (1970)Google Scholar
  20. [20]
    A. Ziabicki: J. Chem. Phys. 66, 1638 (1977)CrossRefGoogle Scholar
  21. [21]
    A. Ziabicki: J. Chem. Phys. 85, 3042 (1986)CrossRefGoogle Scholar
  22. [22]
    A. Ziabicki, L. Jarecki: Inst. Fund. Technol. Res. Report, No 1 (1982)Google Scholar
  23. [23]
    A. Ziabicki, L. Jarecki: Colloid Polymer Sci. 256, 332 (1978)CrossRefGoogle Scholar
  24. [24]
    P. Sajkiewicz, A. Wasiak: Colloid Polymer Sci. 277, 646 (1999)CrossRefGoogle Scholar
  25. [25]
    L. Jarecki: Colloid Polymer Sci. 269, 11 (1991)CrossRefGoogle Scholar
  26. [26]
    M. Volmer, A. Veber: Z. Phys. Chem. 119, 277 (1926)Google Scholar
  27. [27]
    R. Kaischev, I.N. Stransky: Z. Phys. Chem. Abt B, 26, 317 (1934)Google Scholar
  28. [28]
    R. Becker, W. Döring: Ann. Phys. 24, 719 (1935)Google Scholar
  29. [29]
    R. Becker, W. Döring: Ann. Phys. 32, 128 (1938)Google Scholar
  30. [30]
    D. Turnbull, J.C. Fisher: J. Chem. Phys. 17, 71 (1949)CrossRefGoogle Scholar
  31. [31]
    J. Frenkel: Kinetic theory of liquids (Oxford University, London 1946)Google Scholar
  32. [32]
    J.B. Zeldovich: Acta Physicochim. USSR 18, 1 (1943)Google Scholar
  33. [33]
    F.C. Frank, M. Tosi: Proc. Royal Soc. (London) 263, 323 (1961)Google Scholar
  34. [34]
    F.P. Price: J. Polymer Sci. 37, 71 (1959)CrossRefGoogle Scholar
  35. [35]
    J.D. Hoffman, J.J. Weeks, W.M. Murphy: J. Res. Natl. Bureau Stds. 63A, 67 (1959)Google Scholar
  36. [36]
    J.D Hoffman, J.I. Lauritzen: J. Res. Natl. Bureau Stds. 65A, 297 (1961)Google Scholar
  37. [37]
    A. Ziabicki, L. Jarecki: J. Chem. Phys. 101, 2267 (1994)CrossRefGoogle Scholar
  38. [38]
    S. Glasstone, K.J. Laidler, H. Eyring: The Theory of Rate Processes (McGraw & Hill, New York 1941)Google Scholar
  39. [39]
    L. Jarecki, A. Ziabicki: Polymer 18, 1015 (1977)CrossRefGoogle Scholar
  40. [40]
    L. Jarecki, A, Ziabicki: Thermodynamically controlled crystal orientation in stressed polymers. In: Flow-Induced Crystallization in Polymers, ed by R.L. Miller (Gordon & Breach, New York 1977) pp 319–330Google Scholar
  41. [41]
    G.B Jeffery: Proc. Royal Soc. London, A102, 161 (1922)Google Scholar
  42. [42]
    M. Doi, S.F. Edwards: The Theory of Polymer Dynamics (Clarendon Press, Oxford 1986)Google Scholar
  43. [43]
    J.C. Fisher, J.H. Holomon, D. Turnbull: J. Appl. Phys. 80, 5751 (1948)Google Scholar
  44. [44]
    L.H. Palys, P.J. Phillips: J. Polymer Sci. (Phys.) 18, 829 (1980)CrossRefGoogle Scholar
  45. [45]
    A. Ziabicki: J. Chem. Phys. 48, 4368 (1968)CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Leszek Jarecki
    • 1
  1. 1.Institute of Fundamental Technological ResearchPolish Academy of SciencesWarsawPoland

Personalised recommendations