Step-scan Alternating Differential Scanning Calorimetry Studies on the Crystallisation Behaviour of Low Molecular Weight Polyethylene

  • Kinga Pielichowska
  • Krzysztof Pielichowski
Part of the Lecture Notes in Physics book series (LNP, volume 714)


Differential scanning calorimetry (DSC) and step-scan alternating (SSA) DSC were applied to investigate the crystallisation behaviour of polyethylene (PE) with molecular weight of 4000, 15000 and 35000. It has been found that PE 15000 is characterised by the highest degree of crystallinity and by the highest crystallisation temperature, as compared with other PE samples studied in the course of this work. The non-reversing component of the crystallisation process depends strongly on the PE molecular weight; parallelly, the reversing component shows minor fluctuations only, confirming thus the irreversibility of the PE crystallisation process.


Crystallisation Behaviour High Crystallisation Temperature Extended Chain Crystal Sine Wave Modulation Isothermal Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.J. Barham, M.J. Hill, A. Keller, C.A. Rosney, J. Mater. Sci. Lett., 7 (1998) 1271.CrossRefGoogle Scholar
  2. [2]
    R.L. Morgan, M.J. Hill, P.J. Barham, A. van der Pol, B. Kip, J. van Ruiten, L. Markwort, J. Macromol. Sci. Phys., B38 (1999) 419.Google Scholar
  3. [3]
    M. Agamalian, R.G. Alamo, M.H. Kim, J.D. Londono, L. Mandelkern, G.D. Wignall, Macromolecules, 32 (1999) 3093.CrossRefGoogle Scholar
  4. [4]
    M. Reading, A. Luget, R. Wilson, Thermochim. Acta, 238 (1994) 295.CrossRefGoogle Scholar
  5. [5]
    M. Reading, Trends in Polym. Sci., 248 (1993) 1.Google Scholar
  6. [6]
    J.E.K. Schawe, Thermochim. Acta., 260 (1995) 1.CrossRefGoogle Scholar
  7. [7]
    M. Sandor, N.A. Bailey, E. Mathiowitz, Polymer, 43 (2002) 279.CrossRefGoogle Scholar
  8. [8]
    K. Pielichowski, K. Flejtuch, J. Appl. Polym. Sci., 90 (2003) 861.CrossRefGoogle Scholar
  9. [9]
    W. Hu, T. Albrecht, G. Strobl, Macromolecules, 32 (1999) 7548.CrossRefGoogle Scholar
  10. [10]
    S.Z.D. Cheng, A. Zhang, J.S. Barley, A. Habenschuss, P.R. Zschack, Macromolecules, 24 (1991) 3937.CrossRefGoogle Scholar
  11. [11]
    C.C. Puig, Polymer, 42 (2001) 6579.CrossRefGoogle Scholar
  12. [12]
    D.C. Bassett, Principles of Polymer Morphology, Cambridge University Press, Cambridge, 1981.Google Scholar
  13. [13]
    J.J. Janimak, G.C. Stevens, Polymer, 41 (2000) 4233.CrossRefGoogle Scholar
  14. [14]
    B. Wunderlich, Prog. Polym. Sci., 28 (2003) 383.CrossRefGoogle Scholar
  15. [15]
    F.C. Frank, M. Tosi, Proc. R. Soc. A., 263 (1961) 263.Google Scholar
  16. [16]
    M.I. Abo el Maaty, D.C. Bassett, Polymer (2005) 8682.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Kinga Pielichowska
    • 1
  • Krzysztof Pielichowski
    • 1
  1. 1.Department of Chemistry and Technology of PolymersCracow University of TechnologyKrakówPoland

Personalised recommendations