Theoretical Aspects of the Equilibrium State of Chain Crystals

  • Jens-Uwe Sommer
Part of the Lecture Notes in Physics book series (LNP, volume 714)


The equilibrium state of polymer single crystals is considered by explicitly taking into account the amorphous fraction formed by loops and tails of the chains. Using ideal chain statistics, a general expression for the free energy excess of the amorphous part is derived. I show that tight loops and close reentries are favored under experimental conditions for under-cooling of polymer single crystals. For many chain crystals, I show that the lamellar thickness increases with the number of chains in the crystal, and that extended chain conformations are thermodynamically favored when the number of chains in the crystal is sufficiently large. The role of finite bending rigidity of chains is discussed for folded chain crystals, as well as tilt effects in extended chain crystals.


Extended Chain Loop Length Amorphous Fraction Polymer Crystal Statistical Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Keller. A note on single crystals in polymers – evidence for a folded chain configuration. Phil. Mag., 2(21):1171, 1957.Google Scholar
  2. [2]
    E. W. Fischer. Stufenförmiges und spiralförmiges wachstum bei hochpolymeren. Z. Naturf. A, 12(9):753–754, 1957.Google Scholar
  3. [3]
    P. H. Till. The growth of single crystals of linear polyethylene. J. Polym. Sci., 24(106):301–306, 1957.CrossRefGoogle Scholar
  4. [4]
    J. D. Hoffmann, G. T. Davis, and J. I. Lauritzen. The Rate of Crystallization of Linear Polymers with Chain Folding, volume 3, pp. 497–614. Plenum Press, treatise in solid state chemistry edition, 1976.Google Scholar
  5. [5]
    D. M. Sadler. New explanation fro chain folding in polymers. Nature, 326:174–177, March 1987.CrossRefGoogle Scholar
  6. [6]
    M. Hikosaka, K. Amano, S. Rastogi, and A. Keller. Lamellar thickening growth of an extended chain single crystal of polyethylene. 1. pointers to a new crystallization mechanism of polymers. Macromolecules, 30(7):2067–2074, March 1997.CrossRefGoogle Scholar
  7. [7]
    M. Al-Hussein and G. Strobl. The melting line, the crystallization line, and the equilibrium melting temperature of isotactic polystyrene. Macromolecules, 35(5):1672–1676, February 2002.CrossRefGoogle Scholar
  8. [8]
    G. Reiter, G. Castelein, and J.-U. Sommer. Liquidlike morphological transformations in monolamellar polymer crystals. Phys. Rev. Lett., 86(26):1918–5921, June 2001.CrossRefGoogle Scholar
  9. [9]
    J.-U. Sommer and G. Reiter. Morphogegesis of lamellar polymer crystals. Europhys. Lett., 56(5):755–761, December 2001.CrossRefGoogle Scholar
  10. [10]
    G. Ungar, J. Stejny, A. Keller, and M. C. Whiting. The crystallization of ultralong normal paraffines – the onset of chain folding. Science, 229(4711):386–389, 1985.CrossRefGoogle Scholar
  11. [11]
    S. Rastogi, M. Hikosaka, H. Kawabata, and A. Keller. Role of mobile phase in the crystallization of polyetylene. 1. matastability and lateral growth. Macromolecules, 24:6384–6391, 1991.CrossRefGoogle Scholar
  12. [12]
    J. A. Subirana. Elucidation of chain folding in polymer crystals: Comparison with proteins. Trends in Pol. Sci., 5(10):321–326, October 1997.Google Scholar
  13. [13]
    K. Armistead and G. Goldbeck-Wood. Polymer crystallization theories. Adv. Polym. Sci., 100:219–312, 1992.CrossRefGoogle Scholar
  14. [14]
    G. Strobl. The Physics of Polymers. Springer, Berlin, Heidelberg, N.Y., 2 edition, 1997.Google Scholar
  15. [15]
    H. Zachmann. Der Eeinfluss der Konfigurationsentropie auf das Kristallisationsund Schmelzverhalten von hochpolymeren Stoffen. Kolloid Z. Z. Polym., 216–217:180–191, 1967.Google Scholar
  16. [16]
    E. W. Fischer. Das grenzflächenschmelzen der kristallite in teilkristallisierten hochpolymeren. teil i: Theoretische grundlagen. Kolloid Z. Z. Polym., 218(2): 97–114, June 1967.CrossRefGoogle Scholar
  17. [17]
    W. Hu, T. Albrecht, and G. Strobl. Reversible surface melting of pe and peo crystallites indicated by tmdsc. Macromolecules, 32(22):7548–7554, 1999.CrossRefGoogle Scholar
  18. [18]
    M. Muthukumar. Molecular modelling of nucleation in polymers. Phil. Trans. R. Soc. Lond. A, 361:539–556, 2003.CrossRefGoogle Scholar
  19. [19]
    P. Welch and M. Muthukumar. Molecular mechanisms of polymer crystallization from solution. Phys. Rev. Lett., 87(21):218302, November 2001.CrossRefGoogle Scholar
  20. [20]
    L. Larini, A. Barbieri, P. A. Rolla, and D. Leporini. Equilibrated polyethylene single-molecule crystals: molecular-dynamics simulations and analytic model of the global minimum of the free-energy landscape. J. Phys: Condens. Matter, 17(19):L199–L208, 2005.CrossRefGoogle Scholar
  21. [21]
    J. D. Hoffman. Thermodynamic driving force in nucleation and growth processes. J. Chem. Phys., 29(5):1192–1193, November 1958.CrossRefGoogle Scholar
  22. [22]
    G. Wulff. On the question of speed of growth and dissolution of crystal surfaces. Zeitschrift für Kristallographie und Mineralogie, 34:449, 1901.Google Scholar
  23. [23]
    J.-U. Sommer and G. Reiter. Crystallization in ultra-thin polymer films morphogenesis and thermodynamical aspects. Thermochimica Acta, 432(2):135–147, June 2005.CrossRefGoogle Scholar
  24. [24]
    P. de Gennes. Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca and London, 1979.Google Scholar
  25. [25]
    J.-U. Sommer. The role of the amorphous fraction for the equilibrium shape of polymer single crystals. Eur. Phys. J. E, 19, 413–422, 2006.CrossRefGoogle Scholar
  26. [26]
    M. Doi and S. Edwards. The Theory of Polymer Dynamics. Clarendon Press, Oxford, 1986.Google Scholar
  27. [27]
    D. S. M. de Silva, X. B. Zeng, G. Ungar, and S. J. Spells. Chain tilt and surface disorder in lamellar crystals. a ftir and saxs study of labeled long alkanes. Macromolecules, 35(20):7730–7741, September 2002.CrossRefGoogle Scholar
  28. [28]
    D. S. M. de Silva, X. B. Zeng, G. Ungar, and S. J. Spells. On perpendicular and tilted chains in lamellar crystals. J. Macromol. Sci., B42(3,4):915–927, May 2003.Google Scholar
  29. [29]
    J.-P. Gorce and S. J. Spells. Ftir studies of conformational disorder: crystal perfecting in long chain n-alkanes. Polymer, 45(10):3297–3303, May 2004.CrossRefGoogle Scholar
  30. [30]
    A. Silberberg. Distribution of conformations and chain ends near the surface of a melt of linear flexible macromolecules. J. Coll. Interface Sci., 90(1):86–91, November 1981.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jens-Uwe Sommer
    • 1
  1. 1.Institut de Chimie des Surfaces et Interfaces (ICSI-CNRS)MulhouseFrance

Personalised recommendations