The Role of the Interphase on the Chain Mobility and Melting of Semi-crystalline Polymers; A Study on Polyethylenes

  • Sanjay Rastogi
  • Dirk R. Lippits
  • Ann E. Terry
  • Piet J. Lemstra
Part of the Lecture Notes in Physics book series (LNP, volume 714)


In semi-crystalline polymers, a range of morphologies can be obtained in which a chain may traverse the amorphous region between the crystals or fold back into the crystals leading to adjacent or non-adjacent re-entry, depending on the molecular architecture and crystallization conditions. This causes topological variations on the crystal surface and the occurrence of an interphase between the crystalline and amorphous domains, thus affecting the mechanical properties. In this chapter, we will discuss how the morphology within the interphase plays a prominent role in drawability, lamellar thickening and melting of thus crystallized samples. Normally, for linear polymers it is anticipated that extended chain crystals are thermodynamically most favorable, and ultimately, taking the example of linear polyethylene, it is shown that such chains would form extended chain crystals. However, this condition will not be realized in a range of polymers upon crystallization from the melt, such as those which do not show lamellar thickening or in branched polymers where the side branches cannot be incorporated within the crystal and hence fully extended chains are not possible. From a series of experiments, it is shown that with sufficient time and chain mobility, although extended chain crystals are not achievable, the chains still disentangle and a thermodynamically stable morphology is formed with a disentangled crystallizable interphase. The disentangled interphase has implications in the melting behavior of polymer crystals. It is feasible to melt these crystals by simple consecutive detachment of chain segments from the crystalline substrate. Clear distinction in different melting processes is observed, by the differences in the activation energies required for the consecutive detachment of chain segments or clusters of chain segments. The differences in the melting behavior, revealed during different heating rates, have consequences on the chain dynamics.


Hexagonal Phase Orthorhombic Phase Chain Mobility Crystal Thickness Linear Alkane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, Ithaca, New YorkGoogle Scholar
  2. [2]
    Mandelkern L (1983) An Introduction to Macromolecules. Springer-Verlag, New YorkGoogle Scholar
  3. [3]
    Mandelkern L (1983) Crystallization in Polymers. McGraw-Hill Book Company, New YorkGoogle Scholar
  4. [4]
    Mandelkern L (1992) Chemtracts (Macromol Chem) 3:347Google Scholar
  5. [5]
    Baker AME, Windle AH (2002) Polymer 42:667CrossRefGoogle Scholar
  6. [6]
    Gautam S, Balijepalli S, Rutledge GC (2000) Macromolecules 33:9136CrossRefGoogle Scholar
  7. [7]
    Bassett DC, Hodge AM (1981) Proc R Soc London A377:25; ibid (1981) A377:39; ibid (1981) A377:61Google Scholar
  8. [8]
    Khoury F (1979) Faraday Discuss Chem Soc 68:404Google Scholar
  9. [9]
    Frank FC (1979) Faraday Discuss Chem Soc 68:7CrossRefGoogle Scholar
  10. [10]
    Yoon DY, Flory PJ (1984) Macromolecules 17:868; ibid (1984) 17:862CrossRefGoogle Scholar
  11. [11]
    Kumar SK, Yoon DY (1989) Macromolecules 22:3458CrossRefGoogle Scholar
  12. [12]
    Mandelkern L (1990) Acc Chem Res 23:380CrossRefGoogle Scholar
  13. [13]
    Bassett DC, Hodge AM (1981) Proc R Soc London A377:25Google Scholar
  14. [14]
    Keith HD, Padden FJ (1996) Macromolecules 24:7776CrossRefGoogle Scholar
  15. [15]
    Toda A, Okamura M, Hikosaka M, Nakagawa Y (2000) Polymer 44:6135CrossRefGoogle Scholar
  16. [16]
    Balijepalli S, Rutledge GC (1998) J Chem Phys 109:6523CrossRefGoogle Scholar
  17. [17]
    Smith P, Lemstra PJ, Booij HC (1982) J Polym Sci Part B: Polym Phys 20:2229Google Scholar
  18. [18]
    Lemstra PJ, Bastiaansen CWM, Rastogi S (2000) In: Salem DR (ed) Structure formation in polymeric fibers. Hanser, p. 185Google Scholar
  19. [19]
    Ward IM (1988) Developments in oriented polymers, 2nd Ed. Elsevier, NewYorkGoogle Scholar
  20. [20]
    Bassett DC (1976) Polymer 17:460CrossRefGoogle Scholar
  21. [21]
    Wunderlich B, Grebowicz J (1984) Adv Polym Sci 60/61:1Google Scholar
  22. [22]
    Hikosaka M, Rastogi S, Keller A, Kawabata H (1992) J Macromol Sci, Phys Ed B31:87Google Scholar
  23. [23]
    Rastogi S, Hikosaka M, Kawabata H, Keller A (1991) Macromolecules 24:6384CrossRefGoogle Scholar
  24. [24]
    Hikosaka M, Tsujima K, Rastogi S, Keller A (1992) Polymer 33:2502CrossRefGoogle Scholar
  25. [25]
    Maxwell AS, Unwin AP, Ward IM (1996) Polymer 37:3293CrossRefGoogle Scholar
  26. [26]
    Smith P, Chanzy HD, Rotzinger BP (1985) Polym Comm 26:258Google Scholar
  27. [27]
    Rastogi S, Kurelec L, Lemstra PJ (1998) Macromolecules 22:5022CrossRefGoogle Scholar
  28. [28]
    Rastogi S, Kurelec L, Cuijpers J, Lippits D, Wimmer M, Lemstra PJ (2003) Macromolecular Materials and Engineering 12:964CrossRefGoogle Scholar
  29. [29]
    Ostwald W (1897) Z Physik Chem 22:286Google Scholar
  30. [30]
    Uehara H, Yamanobe T, Komoto T (2000) Macromolecules 33:4861CrossRefGoogle Scholar
  31. [31]
    Rastogi S, Spoelstra AB, Goossens JGP, Lemstra PJ (1997) Macromolecules 30:7880CrossRefGoogle Scholar
  32. [32]
    Xue YQ, Tervoort TA, Rastogi S, Lemstra PJ (2000) Macromolecules 33:7084CrossRefGoogle Scholar
  33. [33]
    Ungar G, Zeng X (2001) Chem Rev 101:4157CrossRefGoogle Scholar
  34. [34]
    Terry AE, Phillips TL, Hobbs JK (2003) Macromolecules 36:3240CrossRefGoogle Scholar
  35. [35]
    Schmidt-Rohr K, Spiess HW (1994) in Multidimensional solid-state NMR and polymers Academic Press, London, p. 478Google Scholar
  36. [36]
    Brooke GM, Burnett S, Mohammed S, Proctor D, Whiting MC (1996) J Chem Soc Perkin Trans 1:1635CrossRefGoogle Scholar
  37. [37]
    Wunderlich B (1980) Macromolecular Physics, Vol 3: Crystal melting. Academic Press, New YorkGoogle Scholar
  38. [38]
    Kortleve G, Tuijnman CA, Vonk CG (1972) J Polym Sci Part B: Polym Phys 10:123Google Scholar
  39. [39]
    Hosoda S, Nomura H, Gotoh Y, Kihara H (1990) Polymer 31:1999CrossRefGoogle Scholar
  40. [40]
    Vonk CG, Reynaers H (1990) Polymer Commun 31:190Google Scholar
  41. [41]
    Zachmann HG (1967) Kolloid-Z u Z Polymere 216–217:180CrossRefGoogle Scholar
  42. [42]
    Vonk CG (1986) J Polym Sci: Polym Lett 24:305Google Scholar
  43. [43]
    Ungar G, Stejny J, Keller A, Bidd I, Whiting MC (1985) Science 229:386CrossRefGoogle Scholar
  44. [44]
    Ungar G, Keller A (1986) Polymer 27:1835CrossRefGoogle Scholar
  45. [45]
    Organ SJ, Keller A, Hikosaka M, Ungar G (1996) Polymer 37:2517CrossRefGoogle Scholar
  46. [46]
    Zeng X, Ungar G (1998) Polymer 39:4523CrossRefGoogle Scholar
  47. [47]
    Ungar G, Zeng X, Brooke GM, Mohammed S (1998) Macromolecules 31:1875CrossRefGoogle Scholar
  48. [48]
    Zeng X, Ungar G (1999) Macromolecules 32:3543CrossRefGoogle Scholar
  49. [49]
    Spells SJ, Zeng X, Ungar G (2000) Polymer 41:8775CrossRefGoogle Scholar
  50. [50]
    Hikosaka M, Seto T (1982) Jpn J Appl Phys 21:L332CrossRefGoogle Scholar
  51. [51]
    Rastogi A, Hobbs JK, Rastogi S (2002) Macromolecules 35:5861CrossRefGoogle Scholar
  52. [52]
    Hay IL, Keller A (1970) J Polym Sci Part C 30:289Google Scholar
  53. [53]
    Vanden Eynde S, Mathot VBF, Hoehne GWH, Schawe JWK, Reynaers H (2000) Polymer 41:3411CrossRefGoogle Scholar
  54. [54]
    Rastogi A (2002) PhD Thesis, Eindhoven University of Technology; Rastogi A, Terry AE, Rastogi S, Mathot VBF (2004) Macromolecules (under consideration)Google Scholar
  55. [55]
    Rastogi S, Newman M, Keller A (1991) Nature 353:55CrossRefGoogle Scholar
  56. [56]
    Rastogi S, Newman M, Keller A (1993) J Polym Sci Part B: Polym Phys 31:125CrossRefGoogle Scholar
  57. [57]
    Rastogi S, Hoehne GWH, Keller A (1999) Macromolecules 32:8897CrossRefGoogle Scholar
  58. [58]
    It is to be noted that the reflection assigned to the “new phase” in butyl branched alkanes is relatively weak compared to the reflections observed for the “new phase” in ethylene-1-octene copolymer (5.2 mol%). As explained in this chapter, we attribute the new phase to the crystallization of transient layer (butyl branches and fold surface). Considering the anticipated tight folds for butyl branched alkanes, the amount of crystallizable entities in the branched alkanes would be much less compared to ethylene-1-octene copolymers, where the loose folds are expected. We would like to mention that considering the d-value and intensity of the pseudo-hexagonal phase in branched alkanes, this reflection may be referred to as open-orthorhombic phase.Google Scholar
  59. [59]
    Gupta VB (2002) J Appl Polym Sci 83:586CrossRefGoogle Scholar
  60. [60]
    Suzuki H, Grebowicz J, Wunderlich B (1985) Makromolecular Chemistry 186:1109CrossRefGoogle Scholar
  61. [61]
    Huo P, Cebe P (1992) Macromolecules 25:902CrossRefGoogle Scholar
  62. [62]
    Gabriels W, Gaur HA, Feyen FC, Veeman WS (1994) Macromolecules 27:5811CrossRefGoogle Scholar
  63. [63]
    Cole KC, Aiji A, Pellerin E (2002) Macromolecules 32:770CrossRefGoogle Scholar
  64. [64]
    Schick C, Dobbertin J, Potter M, Dehne H, Hensel A, Wurm A, Ghoneim AN, Weyer S (1997) Thermal Analysis 49:499CrossRefGoogle Scholar
  65. [65]
    Schick C, Wurm A, Mohamed A (2001) Colloid Polymer Science 279:800CrossRefGoogle Scholar
  66. [66]
    Lin J, Shenogin S, Nazarenko S (2002) Polymer 43:4733CrossRefGoogle Scholar
  67. [67]
    Rastogi R, Vellinga WP, Rastogi S, Schick C, Meijer HEH (2004) J Polym Sci Part B: Polym Phys 42:2092CrossRefGoogle Scholar
  68. [68]
    Bastiaansen, CWM, Meijer HEH,Lemstra PJ (1990) Polymer 31, 1435CrossRefGoogle Scholar
  69. [69]
    Lebans, PJR, Bastiaansen, CWM, (1989) macromolecules 3312Google Scholar
  70. [70]
    Barham P, Sadler DM (1991) Polymer 32, 393CrossRefGoogle Scholar
  71. [71]
    De Gennes PGC (1995) R. Acad. Sci. Paris 321 series II 363Google Scholar
  72. [72]
    Rastogi S, Lippits DR, Peters GWM, Graf R, Yao Y, Spiess HW (2005) Nature Materials 4, 635CrossRefGoogle Scholar
  73. [73]
    Lippits DR, Rastogi S., Höhne GWH (2006) Physical Review Letters 96, article number 218303Google Scholar
  74. [74]
    Keller A. (1957) Phil. Mag. 2, 1171Google Scholar
  75. [75]
    Fischer EW (1957) Nature 12a, 753Google Scholar
  76. [76]
    Strobl G (1997) The Physics of Polymers, Springer, p. 166Google Scholar
  77. [77]
    Wunderlich B, Czornyj G (1977), Macromolecules 10, 906CrossRefGoogle Scholar
  78. [78]
    Minakov AA, Mordvintsev DA, Schick C (2004) Polymer, 3755Google Scholar
  79. [79]
    Toda A, Hikosaka M, Yamada K (2002) Polymer 43, 1667CrossRefGoogle Scholar
  80. [80]
    The authors are aware that depending on the experimental methods used, different numerical Gibbs-Thomson equations exist, see Cho TY, Heck B, Strobl G, (20004) Colloid Polym Sci. 282, 825. A differences arises because of different surface free energy values resulting in a somewhat different melting temperature of 136C for a crystal thickness of 25 nm. But such discrepancies in the calculated melting temperatures have no implications on our experimental findingsGoogle Scholar
  81. [81]
    Tervoort-Engelen YMT, Lemstra PJ (1991) Polym. Comm. 32, 345Google Scholar
  82. [82]
    Considering 1/3rd lesser neighbor interactions on the surface than in bulk, the detachment energy and its diffusion into the melt is likely to be 2.7 kJ/mol since the melting enthalpy of the bulk is 4.11 kJ/molCH2 a value obtained from the ATHAS data bank ( Scholar
  83. [83]
    Yao Y, Graf R, Rastogi S. Lippits DR, Spiess HW (2006), manuscript in preparationGoogle Scholar
  84. [84]
    Lippits DR, Rastogi S (2006) manuscript in preparationGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Sanjay Rastogi
    • 1
    • 3
  • Dirk R. Lippits
    • 1
  • Ann E. Terry
    • 1
    • 2
  • Piet J. Lemstra
    • 1
  1. 1.Department of Chemical Engineering, Dutch Polymer InstituteEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.ISIS FacilityRutherford Appleton LaboratoryEnglandUK
  3. 3.IPTMELoughborough UniversityEngland

Personalised recommendations