Skip to main content

The Role of the Interphase on the Chain Mobility and Melting of Semi-crystalline Polymers; A Study on Polyethylenes

  • Chapter
Progress in Understanding of Polymer Crystallization

Part of the book series: Lecture Notes in Physics ((LNP,volume 714))

Abstract

In semi-crystalline polymers, a range of morphologies can be obtained in which a chain may traverse the amorphous region between the crystals or fold back into the crystals leading to adjacent or non-adjacent re-entry, depending on the molecular architecture and crystallization conditions. This causes topological variations on the crystal surface and the occurrence of an interphase between the crystalline and amorphous domains, thus affecting the mechanical properties. In this chapter, we will discuss how the morphology within the interphase plays a prominent role in drawability, lamellar thickening and melting of thus crystallized samples. Normally, for linear polymers it is anticipated that extended chain crystals are thermodynamically most favorable, and ultimately, taking the example of linear polyethylene, it is shown that such chains would form extended chain crystals. However, this condition will not be realized in a range of polymers upon crystallization from the melt, such as those which do not show lamellar thickening or in branched polymers where the side branches cannot be incorporated within the crystal and hence fully extended chains are not possible. From a series of experiments, it is shown that with sufficient time and chain mobility, although extended chain crystals are not achievable, the chains still disentangle and a thermodynamically stable morphology is formed with a disentangled crystallizable interphase. The disentangled interphase has implications in the melting behavior of polymer crystals. It is feasible to melt these crystals by simple consecutive detachment of chain segments from the crystalline substrate. Clear distinction in different melting processes is observed, by the differences in the activation energies required for the consecutive detachment of chain segments or clusters of chain segments. The differences in the melting behavior, revealed during different heating rates, have consequences on the chain dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, Ithaca, New York

    Google Scholar 

  2. Mandelkern L (1983) An Introduction to Macromolecules. Springer-Verlag, New York

    Google Scholar 

  3. Mandelkern L (1983) Crystallization in Polymers. McGraw-Hill Book Company, New York

    Google Scholar 

  4. Mandelkern L (1992) Chemtracts (Macromol Chem) 3:347

    CAS  Google Scholar 

  5. Baker AME, Windle AH (2002) Polymer 42:667

    Article  Google Scholar 

  6. Gautam S, Balijepalli S, Rutledge GC (2000) Macromolecules 33:9136

    Article  CAS  Google Scholar 

  7. Bassett DC, Hodge AM (1981) Proc R Soc London A377:25; ibid (1981) A377:39; ibid (1981) A377:61

    Google Scholar 

  8. Khoury F (1979) Faraday Discuss Chem Soc 68:404

    Google Scholar 

  9. Frank FC (1979) Faraday Discuss Chem Soc 68:7

    Article  Google Scholar 

  10. Yoon DY, Flory PJ (1984) Macromolecules 17:868; ibid (1984) 17:862

    Article  CAS  Google Scholar 

  11. Kumar SK, Yoon DY (1989) Macromolecules 22:3458

    Article  CAS  Google Scholar 

  12. Mandelkern L (1990) Acc Chem Res 23:380

    Article  CAS  Google Scholar 

  13. Bassett DC, Hodge AM (1981) Proc R Soc London A377:25

    Google Scholar 

  14. Keith HD, Padden FJ (1996) Macromolecules 24:7776

    Article  Google Scholar 

  15. Toda A, Okamura M, Hikosaka M, Nakagawa Y (2000) Polymer 44:6135

    Article  Google Scholar 

  16. Balijepalli S, Rutledge GC (1998) J Chem Phys 109:6523

    Article  CAS  Google Scholar 

  17. Smith P, Lemstra PJ, Booij HC (1982) J Polym Sci Part B: Polym Phys 20:2229

    CAS  Google Scholar 

  18. Lemstra PJ, Bastiaansen CWM, Rastogi S (2000) In: Salem DR (ed) Structure formation in polymeric fibers. Hanser, p. 185

    Google Scholar 

  19. Ward IM (1988) Developments in oriented polymers, 2nd Ed. Elsevier, NewYork

    Google Scholar 

  20. Bassett DC (1976) Polymer 17:460

    Article  CAS  Google Scholar 

  21. Wunderlich B, Grebowicz J (1984) Adv Polym Sci 60/61:1

    CAS  Google Scholar 

  22. Hikosaka M, Rastogi S, Keller A, Kawabata H (1992) J Macromol Sci, Phys Ed B31:87

    Google Scholar 

  23. Rastogi S, Hikosaka M, Kawabata H, Keller A (1991) Macromolecules 24:6384

    Article  CAS  Google Scholar 

  24. Hikosaka M, Tsujima K, Rastogi S, Keller A (1992) Polymer 33:2502

    Article  CAS  Google Scholar 

  25. Maxwell AS, Unwin AP, Ward IM (1996) Polymer 37:3293

    Article  CAS  Google Scholar 

  26. Smith P, Chanzy HD, Rotzinger BP (1985) Polym Comm 26:258

    CAS  Google Scholar 

  27. Rastogi S, Kurelec L, Lemstra PJ (1998) Macromolecules 22:5022

    Article  Google Scholar 

  28. Rastogi S, Kurelec L, Cuijpers J, Lippits D, Wimmer M, Lemstra PJ (2003) Macromolecular Materials and Engineering 12:964

    Article  Google Scholar 

  29. Ostwald W (1897) Z Physik Chem 22:286

    Google Scholar 

  30. Uehara H, Yamanobe T, Komoto T (2000) Macromolecules 33:4861

    Article  CAS  Google Scholar 

  31. Rastogi S, Spoelstra AB, Goossens JGP, Lemstra PJ (1997) Macromolecules 30:7880

    Article  CAS  Google Scholar 

  32. Xue YQ, Tervoort TA, Rastogi S, Lemstra PJ (2000) Macromolecules 33:7084

    Article  CAS  Google Scholar 

  33. Ungar G, Zeng X (2001) Chem Rev 101:4157

    Article  CAS  Google Scholar 

  34. Terry AE, Phillips TL, Hobbs JK (2003) Macromolecules 36:3240

    Article  CAS  Google Scholar 

  35. Schmidt-Rohr K, Spiess HW (1994) in Multidimensional solid-state NMR and polymers Academic Press, London, p. 478

    Google Scholar 

  36. Brooke GM, Burnett S, Mohammed S, Proctor D, Whiting MC (1996) J Chem Soc Perkin Trans 1:1635

    Article  Google Scholar 

  37. Wunderlich B (1980) Macromolecular Physics, Vol 3: Crystal melting. Academic Press, New York

    Google Scholar 

  38. Kortleve G, Tuijnman CA, Vonk CG (1972) J Polym Sci Part B: Polym Phys 10:123

    CAS  Google Scholar 

  39. Hosoda S, Nomura H, Gotoh Y, Kihara H (1990) Polymer 31:1999

    Article  CAS  Google Scholar 

  40. Vonk CG, Reynaers H (1990) Polymer Commun 31:190

    CAS  Google Scholar 

  41. Zachmann HG (1967) Kolloid-Z u Z Polymere 216–217:180

    Article  Google Scholar 

  42. Vonk CG (1986) J Polym Sci: Polym Lett 24:305

    CAS  Google Scholar 

  43. Ungar G, Stejny J, Keller A, Bidd I, Whiting MC (1985) Science 229:386

    Article  CAS  Google Scholar 

  44. Ungar G, Keller A (1986) Polymer 27:1835

    Article  CAS  Google Scholar 

  45. Organ SJ, Keller A, Hikosaka M, Ungar G (1996) Polymer 37:2517

    Article  CAS  Google Scholar 

  46. Zeng X, Ungar G (1998) Polymer 39:4523

    Article  CAS  Google Scholar 

  47. Ungar G, Zeng X, Brooke GM, Mohammed S (1998) Macromolecules 31:1875

    Article  CAS  Google Scholar 

  48. Zeng X, Ungar G (1999) Macromolecules 32:3543

    Article  Google Scholar 

  49. Spells SJ, Zeng X, Ungar G (2000) Polymer 41:8775

    Article  Google Scholar 

  50. Hikosaka M, Seto T (1982) Jpn J Appl Phys 21:L332

    Article  Google Scholar 

  51. Rastogi A, Hobbs JK, Rastogi S (2002) Macromolecules 35:5861

    Article  CAS  Google Scholar 

  52. Hay IL, Keller A (1970) J Polym Sci Part C 30:289

    Google Scholar 

  53. Vanden Eynde S, Mathot VBF, Hoehne GWH, Schawe JWK, Reynaers H (2000) Polymer 41:3411

    Article  Google Scholar 

  54. Rastogi A (2002) PhD Thesis, Eindhoven University of Technology; Rastogi A, Terry AE, Rastogi S, Mathot VBF (2004) Macromolecules (under consideration)

    Google Scholar 

  55. Rastogi S, Newman M, Keller A (1991) Nature 353:55

    Article  CAS  Google Scholar 

  56. Rastogi S, Newman M, Keller A (1993) J Polym Sci Part B: Polym Phys 31:125

    Article  CAS  Google Scholar 

  57. Rastogi S, Hoehne GWH, Keller A (1999) Macromolecules 32:8897

    Article  CAS  Google Scholar 

  58. It is to be noted that the reflection assigned to the “new phase” in butyl branched alkanes is relatively weak compared to the reflections observed for the “new phase” in ethylene-1-octene copolymer (5.2 mol%). As explained in this chapter, we attribute the new phase to the crystallization of transient layer (butyl branches and fold surface). Considering the anticipated tight folds for butyl branched alkanes, the amount of crystallizable entities in the branched alkanes would be much less compared to ethylene-1-octene copolymers, where the loose folds are expected. We would like to mention that considering the d-value and intensity of the pseudo-hexagonal phase in branched alkanes, this reflection may be referred to as open-orthorhombic phase.

    Google Scholar 

  59. Gupta VB (2002) J Appl Polym Sci 83:586

    Article  CAS  Google Scholar 

  60. Suzuki H, Grebowicz J, Wunderlich B (1985) Makromolecular Chemistry 186:1109

    Article  CAS  Google Scholar 

  61. Huo P, Cebe P (1992) Macromolecules 25:902

    Article  CAS  Google Scholar 

  62. Gabriels W, Gaur HA, Feyen FC, Veeman WS (1994) Macromolecules 27:5811

    Article  Google Scholar 

  63. Cole KC, Aiji A, Pellerin E (2002) Macromolecules 32:770

    Article  Google Scholar 

  64. Schick C, Dobbertin J, Potter M, Dehne H, Hensel A, Wurm A, Ghoneim AN, Weyer S (1997) Thermal Analysis 49:499

    Article  CAS  Google Scholar 

  65. Schick C, Wurm A, Mohamed A (2001) Colloid Polymer Science 279:800

    Article  CAS  Google Scholar 

  66. Lin J, Shenogin S, Nazarenko S (2002) Polymer 43:4733

    Article  CAS  Google Scholar 

  67. Rastogi R, Vellinga WP, Rastogi S, Schick C, Meijer HEH (2004) J Polym Sci Part B: Polym Phys 42:2092

    Article  CAS  Google Scholar 

  68. Bastiaansen, CWM, Meijer HEH,Lemstra PJ (1990) Polymer 31, 1435

    Article  CAS  Google Scholar 

  69. Lebans, PJR, Bastiaansen, CWM, (1989) macromolecules 3312

    Google Scholar 

  70. Barham P, Sadler DM (1991) Polymer 32, 393

    Article  CAS  Google Scholar 

  71. De Gennes PGC (1995) R. Acad. Sci. Paris 321 series II 363

    Google Scholar 

  72. Rastogi S, Lippits DR, Peters GWM, Graf R, Yao Y, Spiess HW (2005) Nature Materials 4, 635

    Article  CAS  Google Scholar 

  73. Lippits DR, Rastogi S., Höhne GWH (2006) Physical Review Letters 96, article number 218303

    Google Scholar 

  74. Keller A. (1957) Phil. Mag. 2, 1171

    CAS  Google Scholar 

  75. Fischer EW (1957) Nature 12a, 753

    CAS  Google Scholar 

  76. Strobl G (1997) The Physics of Polymers, Springer, p. 166

    Google Scholar 

  77. Wunderlich B, Czornyj G (1977), Macromolecules 10, 906

    Article  CAS  Google Scholar 

  78. Minakov AA, Mordvintsev DA, Schick C (2004) Polymer, 3755

    Google Scholar 

  79. Toda A, Hikosaka M, Yamada K (2002) Polymer 43, 1667

    Article  CAS  Google Scholar 

  80. The authors are aware that depending on the experimental methods used, different numerical Gibbs-Thomson equations exist, see Cho TY, Heck B, Strobl G, (20004) Colloid Polym Sci. 282, 825. A differences arises because of different surface free energy values resulting in a somewhat different melting temperature of 136C for a crystal thickness of 25 nm. But such discrepancies in the calculated melting temperatures have no implications on our experimental findings

    Google Scholar 

  81. Tervoort-Engelen YMT, Lemstra PJ (1991) Polym. Comm. 32, 345

    Google Scholar 

  82. Considering 1/3rd lesser neighbor interactions on the surface than in bulk, the detachment energy and its diffusion into the melt is likely to be 2.7 kJ/mol since the melting enthalpy of the bulk is 4.11 kJ/molCH2 a value obtained from the ATHAS data bank (http://web.utk.edu/~athas/databank/welcome-db.html).

    Google Scholar 

  83. Yao Y, Graf R, Rastogi S. Lippits DR, Spiess HW (2006), manuscript in preparation

    Google Scholar 

  84. Lippits DR, Rastogi S (2006) manuscript in preparation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Rastogi, S., Lippits, D.R., Terry, A.E., Lemstra, P.J. (2007). The Role of the Interphase on the Chain Mobility and Melting of Semi-crystalline Polymers; A Study on Polyethylenes. In: Reiter, G., Strobl, G.R. (eds) Progress in Understanding of Polymer Crystallization. Lecture Notes in Physics, vol 714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47307-6_15

Download citation

Publish with us

Policies and ethics