Advertisement

Monte Carlo Simulations of Semicrystalline Polyethylene: Interlamellar Domain and Crystal-Melt Interface

  • Markus Hütter
  • Pieter J. in ’t Veld
  • Gregory C. Rutledge
Part of the Lecture Notes in Physics book series (LNP, volume 714)

Abstract

The interlamellar domain of semicrystalline polyethylene is studied by means of off-lattice Metropolis Monte Carlo simulations using a realistic united atom force field with inclusion of torsional contributions. Both structural as well as thermal and mechanical properties are discussed for systems with the {201} crystal plane parallel to the interface. In so doing, important data is obtained which is useful for modeling semicrystalline polyethylene in terms of multiphase models. Here, we review the main results published previously by us [P.J. in ’t Veld, M. Hütter, G.C. Rutledge: Macromolecules 39, 439 (2006); M. Hütter, P.J. in ’t Veld, G.C. Rutledge: Polymer (in press), (2006)].

Keywords

Helmholtz Free Energy Interface Stress Temperature Derivative Isobaric Heat Capacity Multiphase Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Seguela: J. Polym. Sci. Pol. Phys., 43, 1729 (2005)CrossRefGoogle Scholar
  2. 2.
    G.R. Strobl, W. Hagedorn: J. Polym. Sci B 16, 1181 (1978)Google Scholar
  3. 3.
    C.C. Naylor, R.J. Meier, B.J. Kip, K.P.J. Williams, S.M. Mason, N. Conroy, D.L. Gerrard: Macromolecules 28, 2969 (1995)CrossRefGoogle Scholar
  4. 4.
    R.H. Boyd: Polymer 26, 1123 (1985)CrossRefGoogle Scholar
  5. 5.
    C. Alvarez, I. Šics, A. Nogales, Z. Denchev, S.S. Funari, T.A. Ezquerra: Polymer 45, 3953 (2004)CrossRefGoogle Scholar
  6. 6.
    S. Torquato: Random Heterogeneous Materials (Springer, New York, 2002)Google Scholar
  7. 7.
    M. {Hütter}: Phys. Rev. E 64, 011209 (2001)CrossRefGoogle Scholar
  8. 8.
    M. {Hütter}, G.C. Rutledge, R.C. Armstrong: Phys. Fluids 17, 014107 (2005)CrossRefGoogle Scholar
  9. 9.
    E.H. Kerner: Proc. Phys. Soc. Lond. 69B, 808 (1956)Google Scholar
  10. 10.
    S. Uemura, M. Takayanagi: J. Appl. Pol. Sci. 10, 113 (1966)CrossRefGoogle Scholar
  11. 11.
    R.M. Christensen: J. Mech. Phys. Solids 38, 379 (1990)CrossRefGoogle Scholar
  12. 12.
    R.M. Christensen, K.H. Lo: J. Mech. Phys. Solids 27, 315 (1979)CrossRefGoogle Scholar
  13. 13.
    S.D. Gardner, C.U.Jr. Pittman, R.M. Hackett: Compos. Sci. Technol. 46, 307 (1993)CrossRefGoogle Scholar
  14. 14.
    B. Crist, C.J. Fisher, P.R. Howard: Macromolecules 22, 1709 (1989)CrossRefGoogle Scholar
  15. 15.
    J. Rault: J. Macromol. Sci. Phys. B12, 335 (1976)Google Scholar
  16. 16.
    R.C. Cammarata, R.K. Eby: J. Mater. Res. 6, 888 (1991)Google Scholar
  17. 17.
    H.P. Fisher, R.K. Eby, R.C. Cammarata: Polymer 35, 1923 (1994)CrossRefGoogle Scholar
  18. 18.
    R.C. Cammarata, K. Sieradzki: Annu. Rev. Mater. Sci. 24, 215 (1994)CrossRefGoogle Scholar
  19. 19.
    P.D. Calvert, D.R. Uhlmann: J. Polym. Sci. 11, 457 (1973)Google Scholar
  20. 20.
    B. Wunderlich: Macromolecular Physics (Academic Press, New York, 1976)Google Scholar
  21. 21.
    J.D. Hoffman: Polymer 23, 656 (1982)CrossRefGoogle Scholar
  22. 22.
    S. Balijepalli, G.C. Rutledge: J. Chem. Phys. 109, 6523 (1998)CrossRefGoogle Scholar
  23. 23.
    S. Balijepalli, G.C. Rutledge: Macromol. Symp. 133, 71 (1998)Google Scholar
  24. 24.
    S. Balijepalli, G.C. Rutledge: Comput. Theor. Polym. Sci. 10, 103 (2000)CrossRefGoogle Scholar
  25. 25.
    S. Gautam, S. Balijepalli, G.C. Rutledge: Macromolecules 33, 9136 (2000)CrossRefGoogle Scholar
  26. 26.
    P.J. {in ’t Veld}, G.C. Rutledge: Macromolecules 36, 7358 (2003)CrossRefGoogle Scholar
  27. 27.
    G.C. Rutledge: J. Macromol. Sci. Phys. B41, 909 (2002)CrossRefGoogle Scholar
  28. 28.
    P.G. Debenedetti: Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton NJ, 1996)Google Scholar
  29. 29.
    P.J. {in ’t Veld}, M. {Hütter}, G.C. Rutledge: Macromolecules 39, 439 (2006)CrossRefGoogle Scholar
  30. 30.
    M. Hütter, P.J. {in ’t Veld}, G.C. Rutledge: Polymer 47, 5494 (2006)CrossRefGoogle Scholar
  31. 31.
    D.C. Bassett, A.M. Hodge: Proc. R. Soc. Lond. A 377(1768), 25 (1981)Google Scholar
  32. 32.
    W. Paul, D.Y. Yoon, G.D. Smith: J. Chem. Phys. 103, 1702 (1995)CrossRefGoogle Scholar
  33. 33.
    K. Bolton, S.B.M. Bosio, W.L. Hase, W.F. Schneider, K.C. Hass: J. Chem. Phys. B 103, 3885 (1999)CrossRefGoogle Scholar
  34. 34.
    N. Waheed, M.S. Lavine, G.C. Rutledge: J. Chem. Phys. 116, 2301 (2002)CrossRefGoogle Scholar
  35. 35.
    M.J. Ko, N. Waheed, M.S. Lavine, G.C. Rutledge: J. Chem. Phys. 121, 2823 (2004)CrossRefGoogle Scholar
  36. 36.
    M. Vacatello, G. Avitabile, P. Corradini, A. Tuzi: J. Chem. Phys. 73, 548 (1980)CrossRefGoogle Scholar
  37. 37.
    R.H. Boyd: Macromolecules 22, 2477 (1989)CrossRefGoogle Scholar
  38. 38.
    K.V. Pant, D.N. Theodorou: Macromolecules 28, 7224 (1995)CrossRefGoogle Scholar
  39. 39.
    L.R. Dodd, T.D. Boone, D.N. Theodorou: Mol. Phys. 78, 961 (1993)CrossRefGoogle Scholar
  40. 40.
    V.G. Mavrantzas, T.D. Boone, E. Zervopoulou, D.N. Theodorou: Macromolecules 32, 5072 (1999)CrossRefGoogle Scholar
  41. 41.
    D.A. Kofke: J. Chem. Phys. 117, 6911 (2002)CrossRefGoogle Scholar
  42. 42.
    J.D. Hoffman, R.L. Miller: Polymer 38, 3151 (1997)CrossRefGoogle Scholar
  43. 43.
    M. Parrinello, A. Rahman: J. Appl. Phys. 52, 7182 (1981)CrossRefGoogle Scholar
  44. 44.
    P.J. Flory, D.Y. Yoon, K.A. Dill: Macromolecules 17, 862 (1984)CrossRefGoogle Scholar
  45. 45.
    A.W. Neumann, J.K. Spelt (eds.): Applied Surface Thermodynamics (Marcel Dekker, New York, 1996)Google Scholar
  46. 46.
    J.B. Hudson: Surface Science : An Introduction (John Wiley, New York, 1998)Google Scholar
  47. 47.
    A. Zangwill: Physics at Surfaces (Cambridge University Press, New York, 1988)Google Scholar
  48. 48.
    J.W. Gibbs: The Scientific Papers of J. Willard Gibbs, vol. 1 (Longmans-Green, London, 1906)Google Scholar
  49. 49.
    C. Herring: The use of classical macroscopic concepts in surface energy problems. In: Structure and Properties of Solid Surfaces ed by R. Gomer and C.S. Smith (The University of Chicago Press, Chicago, 1953) pp. 5–72Google Scholar
  50. 50.
    M.P. Allen, D.J. Tildesley: Computer Simulation of Liquids (Clarendon Press, Oxford, 1986) Ch. 2Google Scholar
  51. 51.
    U. Gaur, B. Wunderlich: J. Chem. Phys. Ref. Data 10, 119 (1981)CrossRefGoogle Scholar
  52. 52.
    O. Olabisi, R. Simha: Macromolecules 8, 206 (1975)CrossRefGoogle Scholar
  53. 53.
    J.F. Nye: Physical Properties of Crystals (Clarendon Press, Oxford, 1985)Google Scholar
  54. 54.
    T. Krigas, J.M. Carella, M.J. Struglinski, B. Crist, W.W. Greassley, F.C. Shilling: J. Polym. Sci., Polym. Phys. Ed. 23, 509 (1985)CrossRefGoogle Scholar
  55. 55.
    R.A. Orwoll, P.J. Flory: J. Am. Chem. Soc. 89, 6814 (1967)CrossRefGoogle Scholar
  56. 56.
    H.D. Keith, F.J.Jr. Padden: Polymer 25, 28 (1984)CrossRefGoogle Scholar
  57. 57.
    B. Lotz, S.Z.D. Cheng: Polymer 46, 577 (2005)CrossRefGoogle Scholar
  58. 58.
    I.M. Ward: Mechanical Properties of Solid Polymers (Wiley, Chichester [etc.], 1983)Google Scholar
  59. 59.
    D.T. Grubb: Elastic properties of crystalline polymers. In: Materials Science and Technology, Volume 12: Structure and Properties of Polymers, ed by R.W. Cahn, P. Haasen and E.J. Kramer (VCH, Weinheim [etc.], 1993) pp. 301–356Google Scholar
  60. 60.
    G.C. Rutledge: Modeling Polymer Crystals. In Simulation Methods for Polymers, ed by M. Kotelyanskii and D.N. Theodorou (Marcel Dekker, New York, 2004), Ch. 9Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Markus Hütter
    • 1
  • Pieter J. in ’t Veld
    • 2
  • Gregory C. Rutledge
    • 3
  1. 1.Department of MaterialsETH ZurichZurichSwitzerland
  2. 2.Sandia National LaboratoriesAlbuquerqueU.S.A.
  3. 3.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations