Small Angle Scattering Study of Polyethylene Crystallization from Solutions

  • Howard Wang
Part of the Lecture Notes in Physics book series (LNP, volume 714)


Crystallization of low molecular weight polyethylene from concentrated solutions has been studied using small angle neutron scattering (SANS). The detection sensitivity of the volume fraction degree of crystallinity is estimated to be 10-5, allowing for measuring the structure and kinetics during the very early stages of crystal growth. SANS spectra for both the early and late stages of crystallization can be satisfactorily interpreted with a lamellar crystal model; there is no evidence of diverging or spinodal-decomposition-like density fluctuations during the early stage of crystallization in polyethylene solutions. A possible explanation of the dominant wavevector in small angle x-ray scattering that led to the proposal of “spinodal decomposition” mechanism for early stage crystallization is suggested.


Spinodal Decomposition Small Angle Neutron Scattering Polymer Crystallization Scatter Length Density Small Angle Neutron Scattering Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Wunderlich, B. “Macromolecular Physics”, Acdemic Press, New York, 1973.Google Scholar
  2. [2]
    Hoffman, J.D., Davis, G.T., Laurizten JI. in “Treatise on Solid State Chemistry”, V3, Crystalline and Non-crystalline Solids, Hannay NB. Ed., Plenum, New York, 1976.Google Scholar
  3. [3]
    Khoury, F.A., Passaglia, E. in “Treatise on Solid State Chemistry”, V3, Crystalline and Noncrystalline Solids, Hannay, N.B. Ed., Plenum, New York, 1976.Google Scholar
  4. [4]
    Hoffman, J.D., Miller, R.L. Polymer, 38, 3151, 1997.CrossRefGoogle Scholar
  5. [5]
    Cheng, S.Z.D., Lotz, B. Phil. Trans. R. Soc. Lond. A, 361, 517, 2003.CrossRefGoogle Scholar
  6. [6]
    Imai, M., Mori, K., Mizukami, T., Kaji, K., Kanaya, T. Polymer, 33, 4451, 1992.CrossRefGoogle Scholar
  7. [7]
    Imai, M., Mori, K., Kizukami, T., Kaji, K., Kanaya, T. Polymer, 33, 4457, 1992.CrossRefGoogle Scholar
  8. [8]
    Imai, M., Kaji, K., Kanaya, T. Phys Rev Lett, 71, 4162, 1993.CrossRefGoogle Scholar
  9. [9]
    Imai, M., Kaji, K., Kanaya, T., Sakai, Y., Phys. Rev. B., 52, 12696, 1995.CrossRefGoogle Scholar
  10. [10]
    Terrill, N.J., Fairclough, P.A., Towns-Andrews, E., Komanschek, B.U., Young, R.J., Ryan, A.J., Polymer, 39, 2381, 1998.CrossRefGoogle Scholar
  11. [11]
    Olmsted, P.D., Poon, W.C.K., McLeish, T.C.B., Terrill, N.J., Ryan, A.J., Phys. Rev. Lett., 81, 373, 1998.CrossRefGoogle Scholar
  12. [12]
    Matsuba, G., Kaji, K., Nishida, K., Kanaya, T., Imai, M., Polym. J, 31, 722, 1999.CrossRefGoogle Scholar
  13. [13]
    Matsuba, G., Kaji, K., Nishida, K., Kanaya, T., Imai, M., Macromolecules, 32, 8932, 1999.CrossRefGoogle Scholar
  14. [14]
    Akpalu, Y.A., Amis, E.J., J. Chem. Phys., 111, 8686, 1999.CrossRefGoogle Scholar
  15. [15]
    Wang, Z.G., Hsiao, B.S., Sirota, E.B., Agarwal, P., Srinivas, S., Macromolecules, 33, 978, 2000.CrossRefGoogle Scholar
  16. [16]
    Wang, W., Schultz, J.M., Hsiao, B.S., Macromolecules, 30, 4544, 1997.CrossRefGoogle Scholar
  17. [17]
    Muthukumar, M., Welch, P., Polymer 2000;41:8833, ibid,; Phys. Rev. Lett., 87, 218302, 2001.CrossRefGoogle Scholar
  18. [18]
    Strobl, G., European Physical Journal E, 3, 165, 2000.CrossRefGoogle Scholar
  19. [19]
    Lotz, B., European Physical Journal E, 3, 185, 2000.CrossRefGoogle Scholar
  20. [20]
    Cheng, S.Z.D., Li, C.Y., Zhu, L., European Physical Journal E, 3, 195, 2000.CrossRefGoogle Scholar
  21. [21]
    Muthukumar, M., European Physical Journal E, 3, 199, 2000.CrossRefGoogle Scholar
  22. [22]
    Petermann, J., Gohil, R.M., Schultz, J.M., Hendricks, R.W., Lin, J.S., J. Polym. Sci. B. Polym. Phys. 20, 523, 1982.Google Scholar
  23. [23]
    Heeley, E.L., Maidens, A.V., Olmsted, P.D., Bras, W. Dolbnya, I.P., Fairclough, J.P.A., Terrill, N.J., Ryan, A. J., Macromolecules, 36, 3656, 2003.CrossRefGoogle Scholar
  24. [24]
    Ania, F., Flores, A., Calleja, F.J.B., J. Macromol Sci.-Pys., B42, 653, 2003.CrossRefGoogle Scholar
  25. [25]
    Nishida, K., Kaji, K., Kanaya, T., Matsuba, G., Konish, T., J. Polym. Sci. B. Polym. Phys., 32, 1817, 2004.CrossRefGoogle Scholar
  26. [26]
    Zhang, J.M., Duan, Y.X., Sato, H., Men, D.Y., Yan, S., Noda, I., Ozaki, Y., J. Phys. Chem. B, 109, 5586, 2005.CrossRefGoogle Scholar
  27. [27]
    Chen, E.Q.,Wang, X., Zhang, A., Mann, I., Harris, F.W., Cheng, S.Z.D., Hsiao, B.S., Yeh, F., Macromol. Rappid Commun., 22, 611, 2001.CrossRefGoogle Scholar
  28. [28]
    Panine, P., Urban, V., Boesecke, P., Narayanan, T.J., Appl. Cryst. 2003;36:991.CrossRefGoogle Scholar
  29. [29]
    Owen, A., Bergmann, A., Polymer International, 53, 12, 2004.CrossRefGoogle Scholar
  30. [30]
    Wang, H., J. Polym. Sci. Part B: Polym. Phys. 42, 3133, 2004.CrossRefGoogle Scholar
  31. [31]
    Zeng, X., Ungar, G., Spells, S.J., King, S.M., Macromolecules, 38, 7201, 2005.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Howard Wang
    • 1
  1. 1.Department of Materials Science and EngineeringMichigan Technological UniversityHoughton

Personalised recommendations