Skip to main content

Nonlinear Quasiresonant Alfvén Oscillations in a One-Dimensional Magnetic Cavity

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 536))

Abstract

The steady state of nonlinear, small-amplitude, one-dimensional quasiresonant Alfvén oscillations in a homogeneous dissipative hydromagnetic cavity forced by the shear motion of its boundaries is studied. It is shown that, even in the case of strong nonlinearity, these oscillations can be represented, to leading order, by a sum of two solutions in the form of oppositely propagating waves with permanent shapes. An infinite set of nonlinear algebraic equations for the Fourier coefficients of these solutions is derived. It is then reduced to a finite set of equations by trancation and solved analytically in the one-mode approximation and numerically in the general case. The comparison of the analytical and numerical results is carried out.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tikhonchuk, V. T., Rankin, R. et al. (1995) Nonlinear dynamics of standing Alfvén waves. Phys. Plasmas 2, 501–515.

    Article  ADS  Google Scholar 

  2. Ionson, J. A. (1978) Resonant absorption of Alfvénic surface waves and the heating of solar coronal loops. Astrophys. J. 226, 650–673.

    Article  ADS  Google Scholar 

  3. Kuperus, M., Ionson, J. A., Spicer, D. (1981) On the theory of coronal heating mechanisms. Ann. Rev. Astron. Astrophys. 19, 7–40.

    Article  ADS  Google Scholar 

  4. Davila, J. M. (1987) Heating of the solar corona by the resonant absorption of Alfvén waves. Astrophys. J. 317, 514–521.

    Article  ADS  Google Scholar 

  5. Goossens, M. (1991) MHD waves and wave heating in non-uniform plasmas. in: Advances in Solar System Magnetohydrodynamics (ed. E. R. Priest, A. W. Hood), p. 135. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  6. Hollweg, J. V. (1991) Alfvén waves. In: Mechanisms of Chromospheric and Coronal Heating (ed. P. Ulmschneider, E. R. Priest, R. Rosner), p. 423. Springer-Verlag, Berlin.

    Google Scholar 

  7. Ofman, L., Davila, J. M. (1995) Nonlinear resonant absorption of Alfvén waves in 3 dimensions, scaling laws, and coronal heating. J. Geophys. Res. 100, 23,427-23,441.

    Google Scholar 

  8. Ruderman, M. S., Berghmans, D. et al. (1997) Direct excitation of resonant torsional Alfvén waves by footpoint motions. Astron. Astrophys. 320, 305–318.

    ADS  Google Scholar 

  9. Tirry, W. J., Poedts, S. (1998) Wave heating of coronal arcades driven by toroidally polarised footpoint motions-Stationary behaviour in dissipative MHD. Astron. Astrophys. 329, 754–764.

    ADS  Google Scholar 

  10. Steffens, S., Deubner, F.-L. et al. (1995) Is there a chromospheric mode at 6-hz? Astron. Astrophys. 302, 277–284.

    ADS  Google Scholar 

  11. Deubner, F.-L., Waldschik, Th., Steffen, S. (1996) Dynamics of the solar atmosphere. 6. Resonant oscillations of an atmospheric cavity: Observations. Astron. Astrophys. 307, 936–946.

    ADS  Google Scholar 

  12. Steffens, S., Schmitz, F., Deubner, F.-L. (1997) The influence of the solar atmospheric stratification on the structure of the acoustic wave field. Solar Phys. 172, 85–92.

    Article  ADS  Google Scholar 

  13. Nocera, L., Priest, E. R. (1991) Bistability of a forced hydromagnetic cavity. J. Plasma Phys. 46, 153–177.

    Article  ADS  Google Scholar 

  14. Nocera, L. (1994) Subharmonic oscillations of a forced hydromagnetic cavity. Geophys. Astrophys. Fluid Dynamics 76, 239–252.

    Article  ADS  Google Scholar 

  15. Rankin, R., Frycz, P. et al. (1994) Nonlinear standing Alfvén waves in the Earth’s magnetosphere. J. Geophys. Res. 99, 21,291-21,301.

    Google Scholar 

  16. Nocera, L., Bologna, M., Califano, F. (1997) Homoclinic chaos in a forced hydromagnetic cavity. Geophys. Astrophys. Fluid Dynamics 86, 131–148.

    Article  ADS  MathSciNet  Google Scholar 

  17. Bologna, M., Nocera, L. (1998) Self oscillations of a forced inhomogeneous hydromagnetic cavity. Astron. Astrophys. 336, 735–742.

    ADS  Google Scholar 

  18. Braginskii, S. I. (1965) Transport Processes in Plasma. In: Review of Plasma Physics (ed. M. A. Leontovitch), Consultants Boureau, New York, vol. 1, 205.

    Google Scholar 

  19. Guckenheimer, J., Holmes, P. (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, Berlin

    MATH  Google Scholar 

  20. Nocera, L., Ruderman, M. S. (1998) On the steady state of nonlinear quasiresonant Alfvén oscillations in one-dimensional magnetic cavity. Astron. Astrophys. 340, 287–299.

    ADS  Google Scholar 

  21. Press, W. H., Teukolsky, S. A. et al. (1992) Numerical Recipes in Fortran. The Art of Scientific Computing. Cambridge Univ. Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nocera, L., Ruderman, M. (1999). Nonlinear Quasiresonant Alfvén Oscillations in a One-Dimensional Magnetic Cavity. In: Passot, T., Sulem, PL. (eds) Nonlinear MHD Waves and Turbulence. Lecture Notes in Physics, vol 536. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47038-7_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-47038-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66697-4

  • Online ISBN: 978-3-540-47038-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics