Skip to main content

Alfvén Wave Filamentation and Plasma Heating

  • Conference paper
  • First Online:
Nonlinear MHD Waves and Turbulence

Part of the book series: Lecture Notes in Physics ((LNP,volume 536))

Abstract

Alfvén wave filamentation is an important instability as it can lead to wave collapse and thus to the formation of small scales. Different asymptotic equations are here derived to describe this phenomenon. They apply in different regimes, depending on the level of the dispersion with respect to the nonlinearity. The (scalar) nonlinear Schrödinger equation, valid when the wave is strongly dispersive, allows the study of the influence of the coupling to magneto-sonic waves on the development of the instability. This equation generalizes to a vector nonlinear Schrödinger equation when the dispersion is decreased. The amount of dissipated energy that results from the wave collapse when damping processes are retained, is also estimated in these two cases. When the dispersion is weak and comparable to the effects of the nonlinearities, a reductive perturbation expansion can be used to derive long-wave equations that generalize the DNLS equations and also contain the reduced MHD for the dynamics in the plane transverse to the propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.W. Belcher and L.Jr. Davis, J. Geophys. Res. 76, 3534 (1971).

    Article  ADS  Google Scholar 

  2. S.A. Bel'kov and S.A. Tsytovich, Sov. Phys. JETP 49, 656 (1979).

    ADS  Google Scholar 

  3. S. Champeaux, A. Gazol, T. Passot and P.L. Sulem, ApJ 486, 477 (1997).

    Article  ADS  Google Scholar 

  4. S. Champeaux, D. Laveder, T. Passot and P.L. Sulem, Remarks on the parallel propagation of small-amplitude dispersive Alfvén waves, Nonlinear Processes in Geophys., in press.

    Google Scholar 

  5. S. Champeaux, T. Passot and P.L. Sulem, J. Plasma Phys. 58, 665 (1997).

    Article  ADS  Google Scholar 

  6. S. Champeaux, T. Passot and P.L. Sulem, Phys. Plasmas 5, 100 (1998).

    Article  ADS  Google Scholar 

  7. S. Champeaux, T. Passot and P.L. Sulem, Phys. Plasmas 6, 413 (1999).

    Article  ADS  Google Scholar 

  8. S. Dyachenko, A. C. Newell, A Pushkarev and V. E. Zakharov, Physica D 57, 210 (1992).

    Article  MathSciNet  Google Scholar 

  9. A. Gazol, T. Passot, and P.L. Sulem, J. Plasma Phys. 60, 95 (1998).

    Article  ADS  Google Scholar 

  10. A. Gazol, T. Passot, and P.L. Sulem, Phys. Plasmas, 6, 3114 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Ghosh, A.F. Vinas and M.L. Golstein, J. Geophys. Res., 98, 15561 (1993).

    Article  ADS  Google Scholar 

  12. T. Hada, J. Geophys. Res. 20, 2415 (1993).

    Google Scholar 

  13. P. Huerre and P.A. Monkewitz, Ann. Rev. Fluid Mech. 22, 473–537 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Kono, M.M. Skorić and D. ter Harr, J. Plasma Phys. 26, 123 (1981).

    Article  ADS  Google Scholar 

  15. S.P.P. Kuo, M. H. Wang and M. C. Lee, J. Geophys. Res. 93, 9621(1988).

    Article  ADS  Google Scholar 

  16. S.P.P. Kuo, M. H. Wang and G. Schmidt, Phys. Fluids B 4, 734 (1988).

    Google Scholar 

  17. D. Laveder, T. Passot and P.L. Sulem, Alfvén wave filamentation beyond the envelope formalism, Proceedings of ITCPP99 (Faro, Portugal, 1999), Physica Scripta, in press.

    Google Scholar 

  18. M. V. Medvedev and P. H. Diamond, Phys. Plasmas 3, 863 (1995).

    Article  ADS  Google Scholar 

  19. J. F. McKenzie, M. Banaszkiewicz and W. I. Axford, Astron. Astrophys. 303, L45 (1995).

    ADS  Google Scholar 

  20. E. Mjolhus, J. Plasma Phys. 16, 321, (1976).

    Article  ADS  Google Scholar 

  21. E. Mjolhus and J. Wyller, J. Plasma Phys. 40, 299 (1988).

    Article  ADS  Google Scholar 

  22. E. Mjolhus and T. Hada, in Nonlinear Waves in Space Plasmas, T. Hada and H. Matsumoto eds., 121, (TERRAPUB, Tokyo, 1997).

    Google Scholar 

  23. A. C. Newell, D. A. Rand and D. Russell, Physica D 33, 281(1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. T. Passot and P.L. Sulem, Phys. Rev. E 48, 2966 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  25. T. Passot and P.L. Sulem, in Small-scale structures in three-dimensional hydrodynamic and magnetohydrodynamic turbulence, M. Meneguzzi, A. Pouquet and P.L. Sulem eds., Lecture Notes in Physics 462, 405 (Springer Verlag, 1995).

    Google Scholar 

  26. T. Passot, C. Sulem and P.L. Sulem, Phys. Rev. E 50, 1427 (1994).

    Article  ADS  Google Scholar 

  27. I. V. Relke and A. M. Rubenchik, J. Plasma. Phys. 39, 369 (1988).

    Article  ADS  Google Scholar 

  28. M.S. Ruderman, Fluid Dyn. 22, 299 (1987) (Isv. Akad. Nauk SSSR, Mekh. Zhid. i Gaza, 2, 159).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. P. K. Shukla, G. Feix and L. Stenflo, Astrophys. Space Sci. 147, 383 (1988).

    Article  ADS  Google Scholar 

  30. P.K. Shukla and L. Stenflo, Astrophys. Space Sci. 155, 145 (1989).

    Article  ADS  Google Scholar 

  31. Spangler, S.R. Phys. Fluids B 2, 407 (1990).

    Article  ADS  Google Scholar 

  32. C. Sulem and P.L. Sulem, The nonlinear Schrödinger equation: self-focusing and wave collapse, Applied Mathematics Sciences 139, (Springer Verlag 1999).

    Google Scholar 

  33. Vinas, A.F. and Goldstein, M.L. J. Plasma Phys. 46, 129 1991.

    Article  ADS  Google Scholar 

  34. M. I. Weinstein, Comm. Math. Phys. 87, 567 (1983).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. G.B. Whitham, Linear and nonlinear waves (Wiley, New York, 1974).

    MATH  Google Scholar 

  36. Zakharov, V.E. and Rubenchik, A.M., Prikl. Mat. Techn. Fiz. 5, 84 (1972) (in Russian), see also Zakharov, V.E. and Kuznetsov, E.A., Sov. Sci. Rev., Section C: Math. Phys. Rev. 4, 167 (1984), or Zakharov, V.E. and Schulman, E.I., in What is integrability?, V.E. Zakharov, ed., 185, Springer Series on Nonlinear Dynamics, (Springer Verlag 1991).

    Google Scholar 

  37. G.P. Zank and W.H. Matthaeus, J. Plasma Physics, 48, 85 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Champeaux, S., Gazol, A., Passot, T., Sulem, P. (1999). Alfvén Wave Filamentation and Plasma Heating. In: Passot, T., Sulem, PL. (eds) Nonlinear MHD Waves and Turbulence. Lecture Notes in Physics, vol 536. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47038-7_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-47038-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66697-4

  • Online ISBN: 978-3-540-47038-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics