Skip to main content

Linear Orderings of Random Geometric Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1665))

Included in the following conference series:

Abstract

In random geometric graphs, vertices are randomly distributed on [0, 1]2 and pairs of vertices are connected by edges whenever they are sufficiently close together. Layout problems seek a linear ordering of the vertices of a graph such that a certain measure is minimized. In this paper, we study several layout problems on random geometric graphs: Bandwidth, Minimum Linear Arrangement, Minimum Cut, Minimum Sum Cut, Vertex Separation and Bisection. We first prove that some of these problems remain NP-complete even for geometric graphs. Afterwards, we compute lower bounds that hold with high probability on random geometric graphs. Finally, we characterize the probabilistic behavior of the lexicographic ordering for our layout problems on the class of random geometric graphs.

This research was partially supported by ESPRIT LTR Project no. 20244 — ALCOM-IT, CICYT Project TIC97-1475-CE, and CIRIT project 1997SGR-00366.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon, J. H. Spencer, and P. Erd?os. The probabilistic method. Wiley-Interscience, New York, 1992. 292

    MATH  Google Scholar 

  2. M. J. Appel and R. P. Russo. The connectivity of a graph on uniform points in [0, 1]d. Technical Report #275, Department of Statistics and Actuarial Science, University of Iowa, 1996. 294

    Google Scholar 

  3. J.E. Atkins, E.G. Boman, and B. Hendrickson. A spectral algorithm for seriation and the consecutive ones problem. SIAM J. Comput., 28(1):297–310, 1999. 291

    Article  MathSciNet  Google Scholar 

  4. S. N. Bhatt and F. T. Leighton. A framework for solving VLSI graph layout problems. Journal of Computer and System Sciences, 28:300–343, 1984. 291

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Boppana. Eigenvalues and graph bisection: An average case analysis. In Proc. on Foundations of Computer Science, pages 280–285, 1987. 292

    Google Scholar 

  6. T. Bui, S. Chaudhuri, T. Leighton, and M. Sipser. Graph bisection algorithms with good average case behavior. Combinatorica, 7:171–191, 1987. 292

    Article  MathSciNet  Google Scholar 

  7. Josep Díaz, Mathew D. Penrose, Jordi Petit, and María Serna. Layout problems on lattice graphs. In T. Asano, H. Imai, D.T. Lee, S. Nakano, and T. Tokuyama, editors, Computing and Combinatorics-5th Annual International Conference, COCOON’99, Tokyo, Japan, July 26-28, 1999, number 1627 in Lecture Notes in Computer Science. Springer-Verlag, Berlin, July 1999. 301

    Google Scholar 

  8. J. Díaz, J. Petit, M. Serna, and L. Trevisan. Approximating layout problems on random sparse graphs. Technical Report LSI 98-44-R, Universitat Polit`ecnica de Catalunya, 1998. 292

    Google Scholar 

  9. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979. 293

    Google Scholar 

  10. F. Gavril. Some NP-complete problems on graphs. In Proc. 11th. Conference on Information Sciences and Systems, pages 91–95, John Hopkins Univ., Baltimore, 1977. 293

    Google Scholar 

  11. D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by simulated annealing: an experimental evaluation; part I, graph partitioning. Operations Research, 37(6):865–892, November 1989. 292

    Article  MATH  Google Scholar 

  12. K. Lang and S. Rao. Finding Near-Optimal Cuts: An Empirical Evaluation. In Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 212–221, 1993. 292

    Google Scholar 

  13. T. Lengauer. Black-white pebbles and graph separation. Acta Informatica, 16:465–475, 1981. 293

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Mitchison and R. Durbin. Optimal numberings of an n×n array. SIAM Journal on Discrete Mathematics, 7(4):571–582, 1986. 291

    Article  MATH  MathSciNet  Google Scholar 

  15. C. H. Papadimitriou and M. Sideri. The bisection width of grid graphs. In First ACM-SIAM Symposium on Discrete Algorithms, pages 405–410, San Francisco, 1990. 295

    Google Scholar 

  16. M. D. Penrose. The longest edge of the random minimal spanning tree. The Annals of Applied Probability, 7:340–361, 1997. 292

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Petit. Combining Spectral Sequencing with Simulated Annealing for the MinLA Problem: Sequential and Parallel Heuristics. Technical Report LSI-97-46-R, Departament de Llenguatges i Sistemes Informàtics, Universitat Polit`ecnica de Catalunya, 1997. 291

    Google Scholar 

  18. J. Petit. Approximation Heuristics and Benchmarkings for the MinLA Problem. In R. Battiti and A. Bertossi, editors, Alex’ 98-Building bridges between theory and applications, http://www.lsi.upc.es/?jpetit/MinLA/Benchmark, February 1998. Universit`a di Trento. 291, 292

  19. J. S. Turner. On the probable performance of heuristics for bandwidth minimization. SIAM Journal on Computing, 15:561–580, 1986. 291, 292

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díaz, J., Penrose, M.D., Petit, J., Serna, M. (1999). Linear Orderings of Random Geometric Graphs. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds) Graph-Theoretic Concepts in Computer Science. WG 1999. Lecture Notes in Computer Science, vol 1665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46784-X_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-46784-X_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66731-5

  • Online ISBN: 978-3-540-46784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics