Skip to main content

Prediction of Viscoelastic Properties and Shear Stability of Polymers in Solution

  • Chapter
  • First Online:
Viscoelasticity, Atomistic Models, Statistical Chemistry

Part of the book series: Advances in Polymer Science ((POLYMER,volume 152))

Abstract

The rheological behaviour of dissolved polymers is very complex. Both experiment and theory in this field have undergone rapid development in recent years. Therefore, we describe the possibilities of predicting the viscoelastic properties as well as the shear stability using the entanglement and reptation concepts and exemplifying mainly with narrow distributed polystyrene samples. The viscoelastic properties are discussed in relation to molar mass, concentration, solvent quality, chemical structure and shear rate. The structure-property relationships derived here permit the prediction of both the zero-shear viscosity, η0, as well as the shear rate dependent viscosity η(\( \dot \gamma \)). These relationships can be extended to non-Newtonian fluids. For solutions of coiled polymers in a thermodynamically good solvent, five distinct states of solution are formed: ideally dilute solution, semi-dilute particle solution, semi-dilute network solution, concentrated particle solution and concentrated network solution. For non-homogeneous, semi-dilute (moderately concentrated) solutions the slope in the linear region of the flow curve [η=f(\( \dot \gamma \))] must be standardised against the overlap parameter c· [η ]. Furthermore, it is possible to predict the onset of shear degradation of polymeric liquids subjected to a laminar velocity field on the basis of molecular modeling. Also described is the phenomenon that the elastic nature (first normal stress difference) may overwhelm the viscous nature (shear stress) at relatively low shear rates. This high elasticity can cause deviation from laminar flow conditions and the onset conditions can be detected by plotting Sr=f(τ12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheftel JC, Cuq JL, Lorient D ( 1992) Lebensmittel-Proteine. Behr’s, Hamburg, p 88

    Google Scholar 

  2. Harris P ( 1990) Food gels. Elsevier Applied Science, New York, p 208

    Google Scholar 

  3. Walter RH (1998) Polysaccharide association structures in food. Marcel Dekker, New York, p 289

    Google Scholar 

  4. Lapasin R, Pricl S (1995) Rheology of industrial polysaccharides. Theory and applications. Padstow, Cornell, p 135

    Google Scholar 

  5. Laba D (1993) Rheological properties of cosmetics and toiletries. Marcel Dekker, New York, p 55

    Google Scholar 

  6. Casale A, Porter RSA (1978) Polymer stress reactions, vol 1. Academic Press, New York, p 70

    Google Scholar 

  7. Koedritz LF, Harvey AH, Honarpour M (1989) Introduction to petroleum reservoir analysis. Gulf, Houston

    Google Scholar 

  8. Gampert B (1985) The influence of polymer additives on velocity and temperature fields. Springer, Berlin Heidelberg New York, p 371

    Google Scholar 

  9. Kulicke W-M, Gräger H, Kötter M (1989) Adv Polym Sci 89:1

    Article  CAS  Google Scholar 

  10. Glass JE. (1986) Water-soluble polymers. Beauty with performance. American Chemical Society, Washington, DC, p 183

    Google Scholar 

  11. Hebeish A, El-Zairy MR, El-Rafie MH, Higazy A, El-Sisy F (1991) Starch 43:98

    Article  CAS  Google Scholar 

  12. Woffindin C, Hoenich NA (1992) JNS Nephrol Dialysis Transplant 7:340

    CAS  Google Scholar 

  13. Beretka J (1992) J Chem Technol BioTechnol 55:269

    Article  CAS  Google Scholar 

  14. Schulz DN, Glass JE (1991) Polymers as rheology modifiers. American Chemical Society, Washington, DC, p 322

    Google Scholar 

  15. Carr ME (1992) Starch 44:219

    Article  CAS  Google Scholar 

  16. Paine AJ (1990) J Colloid Interface Sci 138:157

    Article  CAS  Google Scholar 

  17. Cohen E (1993) Arch Insect Biochem Physiol 22:245

    Article  CAS  Google Scholar 

  18. Glass JE, Swift G ( 1990) Agricultural and synthetic polymers. American Chemical Society, Washington, DC, p 33

    Google Scholar 

  19. Kniewske R, Kulicke W-M (1983) Makromol Chem 184:2173

    Article  CAS  Google Scholar 

  20. Kulicke W-M, Kniewske R (1984) Rheol Acta 23:75

    Article  CAS  Google Scholar 

  21. Kulicke W-M, Griebel Th, Bouldin M (1991) Polymer News 16:39

    CAS  Google Scholar 

  22. Bouldin M, Kulicke W-M, Kehler H (1988) Colloid Polym Sci 266:793

    Article  CAS  Google Scholar 

  23. Kulicke W-M (1986) Fließverhalten von Stoffen und Stoffengemischen. Hüthig & Wepf, Basel, p 218

    Google Scholar 

  24. Kulicke W-M, Klein J, Kniewske R (1982) Progress Polym Sci 8:373

    Article  CAS  Google Scholar 

  25. Kulicke W-M, Haas R (1984) Ind Eng Chem Fundam 23:308

    Article  CAS  Google Scholar 

  26. Haas R, Kulicke W-M (1984) Ind Eng Chem Fundam 23:316

    Article  CAS  Google Scholar 

  27. Schramm G (1994) A practical approach to rheology and rheometry. Haake, Karlsruhe, p 146

    Google Scholar 

  28. Carreau PJ, De Kee DCR, Chhabra RP (1997) Rheology of polymeric systems. Principles and applications. Hanser, Munich, p 35

    Google Scholar 

  29. Macosko CW (1994) Rheology. Principles, measurements and applications. VCH, New York, p 86

    Google Scholar 

  30. Bird RB, Armstrong RC, Hassager O (1977) Dynamics of polymeric liquids. Wiley, New York

    Google Scholar 

  31. Mark JE, Eisenberg A, Graessley WW, Mandelkern L, Koenig JL (1984) Physical properties of polymers. American Chemical Society, Washington, DC

    Google Scholar 

  32. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, Amsterdam

    Google Scholar 

  33. Rouse PE (1953) J Chem Phys 21:1272

    Article  CAS  Google Scholar 

  34. Zimm BH (1956) J Chem Phys 24:269

    Article  CAS  Google Scholar 

  35. Bueche F (1952) J Chem Phys 20:1959

    Article  CAS  Google Scholar 

  36. Debye P, Bueche F (1948) J Chem Phys 16:573

    Article  CAS  Google Scholar 

  37. Bueche F (1956) J Chem Phys 25:599

    Article  CAS  Google Scholar 

  38. Berry GC, Fox TG (1968) Adv Polym Sci 5:261

    Article  Google Scholar 

  39. Ferry JD, Landel RF, Williams ML (1955) J Appl Phys 26:359

    Article  CAS  Google Scholar 

  40. Graessley W, Hazelton R, Lindeman R (1967) Trans Soc Rheol 11:267

    Article  CAS  Google Scholar 

  41. Graessley W (1967) J Chem Phys 47:1942

    Article  CAS  Google Scholar 

  42. Graessley W (1965) J Chem Phys 43:2696

    Article  CAS  Google Scholar 

  43. De Gennes PG (1971) J Chem Phys 55:572

    Article  Google Scholar 

  44. De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, New York

    Google Scholar 

  45. Leger L, De Gennes PG (1982) Annu Rev Phys Chem 33:49

    Article  Google Scholar 

  46. Doi M (1983) J Polym Sci Polym Phys Ed 21:667

    Article  CAS  Google Scholar 

  47. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, 234

    Google Scholar 

  48. Doi M, Edwards SF (1978) J Chem Soc Farad Trans 74:1802

    Article  CAS  Google Scholar 

  49. Han CD, Jhon MS (1986) J Appl Polym Sci 32:3809

    Article  Google Scholar 

  50. Han CD (1976) Rheology in polymer processing. Academic Press, London, p 61

    Google Scholar 

  51. Forsman WC (1989) Polymers in solution. Theoretical considerations and newer methods of characterization. Plenum Press, New York, p 145

    Google Scholar 

  52. Lodge AS (1964) Elastic liquids. Academic Press, New York

    Google Scholar 

  53. Simha R, Zakin L (1962) J Coll Sci 17:270

    Article  CAS  Google Scholar 

  54. De Gennes PG (1976) Macromolecules 9:587

    Article  Google Scholar 

  55. Klein J (1978) Macromolecules 11:852

    Article  CAS  Google Scholar 

  56. Fujita H (1990) Polymer solutions. Elsevier, Amsterdam, p 182

    Google Scholar 

  57. Graessley WW (1974) Adv Polym Sci 16:49

    Google Scholar 

  58. Baumgärtel M, Willenbacher N (1996) Rheol Acta 35:168

    Article  Google Scholar 

  59. Masuda T, Kitagawa K, Onogi S (1970) Polymer J (Japan) 1:418

    CAS  Google Scholar 

  60. Kulicke W-M, Klare J (1980) Angew Makromol Chem 84:67

    Article  CAS  Google Scholar 

  61. Casale A, Moroni A, Civardi E (1976) Angew Makromol Chem 53:1

    Article  CAS  Google Scholar 

  62. Casale A, Porter RS, Johnson JF (1971) J Macromol Sci-Rvs Macromol Chem C5:387

    Google Scholar 

  63. Huggins ML (1942) J Am Chem Soc 64:2716

    Article  CAS  Google Scholar 

  64. Daoud M, Cotton JP, Farnoux B, Jannink G, Sarma G, Benoit H, Dupressix R, Picot C, De Gennes PG (1975) Macromolecules 6:804

    Article  Google Scholar 

  65. Zakin JL, Wu R, Luh H, Mayhan KG (1976) J Polym Sci Polym Phys Ed 14:299

    Article  CAS  Google Scholar 

  66. Schurz J (1975) Rheol Acta 14:293

    Article  CAS  Google Scholar 

  67. Onogi S, Kobayashi TKojima Y, Taniguchi Y (1963) J Appl Polym Sci 7:847

    Article  CAS  Google Scholar 

  68. Griebel TH, Kulicke W-M, Kniewske R (1992) Mehl und Brot 5:154

    Google Scholar 

  69. Arendt O, Kulicke W-M (1998) Angew Makromol Chem 259:61

    Article  CAS  Google Scholar 

  70. Böhm N., Kulicke W-M (1999) Carbohydr Res 293

    Google Scholar 

  71. Robinson G, Ross-Murphy SB, Morris ER (1982) Carbohydr Res 107:17

    Article  CAS  Google Scholar 

  72. Abdel-Alim AH, Balke ST, Hamielec AE (1973) J Appl Polym Sci 17:1431

    Article  CAS  Google Scholar 

  73. Attane P, LeRoy P, Picard JM, Turrel GJ (1981) Non-Newtonian Fluid Mech 9:13

    Article  CAS  Google Scholar 

  74. Ferry JD (1978) Pure Appl Chem 50:299

    Article  CAS  Google Scholar 

  75. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York, p 38

    Google Scholar 

  76. Stratton RA (1966) J Colloid Interface Sci 22:517

    Article  CAS  Google Scholar 

  77. Wissbrunn KF, Metzner AB, Rangel-Nafaille C (1984) Macromolecules 17:1187

    Article  Google Scholar 

  78. Kehler H, Kulicke W-M (1986) Chem Eng Technol 10:802

    Google Scholar 

  79. Elias HG (1996) Polymere von Monomeren und Makromolekülen zu Werkstoffen eine Einführung. Hüthig & Wepf, Heidelberg, p 273

    Google Scholar 

  80. Vinogradov GV, Malkin AV (1980) Rheology of polymers. Springer, Berlin Heidelberg New York, p 128

    Google Scholar 

  81. Williams MC (1967) AIChE J 13:534

    Article  CAS  Google Scholar 

  82. Cross MM (1969) J Appl Polym Sci 13:765

    Article  CAS  Google Scholar 

  83. Kulicke W-M, Porter RS (1981) J Polym Sci Ed 19:1173

    Article  CAS  Google Scholar 

  84. Middleman S (1977) Fundamentals of polymer processing. McGraw-Hill, New York, chap 15

    Google Scholar 

  85. Kulicke W-M, Kiss G, Porter RS (1977) Rheol Acta 16:568

    Article  CAS  Google Scholar 

  86. Petersen JF, Rautenbach R, Schümmer P (1975) Rheol Acta 14:968

    Article  CAS  Google Scholar 

  87. Jackson R, Kaye A (1966) Br J Appl Phys 17:1355

    Article  Google Scholar 

  88. Kulicke W-M, Porter RS (1979) J Appl Polym Sci 23:953

    Article  CAS  Google Scholar 

  89. Kulicke W-M, Jeberien HE, Kiss G, Porter RS (1979) Rheol Acta 18:711

    Article  CAS  Google Scholar 

  90. Pearsom JRA (1976) J Fluid Mech 4:163

    Google Scholar 

  91. Walters K (1975) Rheometry. Wiley, New York, p 65

    Google Scholar 

  92. King MJ, Waters ND (1970) Rheol Acta 9:164

    Article  Google Scholar 

  93. Fewell ME, Hellums JD (1974) AlChE Winter Conf Washington, DC, Dec 1–5

    Google Scholar 

  94. Turian RM (1972) Ind Eng Chem Fundam 11:361

    Article  CAS  Google Scholar 

  95. Gleisle W (1976) Rheol Acta 15:305

    Article  Google Scholar 

  96. Giesekus H (1965) Rheol Acta 4:85

    Article  CAS  Google Scholar 

  97. Lodge AS (1964) Elastic liquids. Academic Press, New York

    Google Scholar 

  98. Lodge AS (1974) Body tensor fields in continuum mechanics. Academic Press, New York

    Google Scholar 

  99. Adams N, Lodge AS (1964) Phil Trans R Soc London A256:149

    Article  Google Scholar 

  100. Southern JH, Paul DR (1974) Polym Eng Sci 14:560

    Article  CAS  Google Scholar 

  101. Kulicke W-M, Böse N (1982) Polym Bull 7:205

    Article  CAS  Google Scholar 

  102. Kulicke W-M, Hörl H-H (1983) Angew Makromol Chem 116:149

    Article  CAS  Google Scholar 

  103. Oertel R, Kulicke W-M (1991) Rheol Acta 30:140

    Article  CAS  Google Scholar 

  104. Kulicke W-M, Reinhardt U (1993) Polym Mat Sci Eng 69:491

    CAS  Google Scholar 

  105. Reinhardt UT, Eidam D, Kulicke W-M (1994) J Getreide, Mehl und Brot 4:56

    Google Scholar 

  106. Kulicke W-M, Duhm L, Schuch A (1994) Chem-Ing-Technik 12:1643

    Article  Google Scholar 

  107. Kulicke W-M, Kull AH, Kull W, Thielking H, Engelhardt J, Pannek J-B (1996) Polymers 13:2723

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the late Professor Roger S. Porter, University of Massachusetts, USA

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grigorescu, G., Kulicke, WM. (2000). Prediction of Viscoelastic Properties and Shear Stability of Polymers in Solution. In: Viscoelasticity, Atomistic Models, Statistical Chemistry. Advances in Polymer Science, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46778-5_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-46778-5_1

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66735-3

  • Online ISBN: 978-3-540-46778-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics