Advertisement

Designs, Intersecting Families, and Weight of Boolean Functions

  • Eric Filiol⋆
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1746)

Abstract

Determining the weight of Boolean functions is of exponential complexity. By using combinatorial results, it is proved that from their algebraic normal form (ANF), it is possible to have polynomial time results on the weight, for some classes of functions. As a result, the structure of the majority functions MAJ 2q-1 is given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New-York, 1968zbMATHGoogle Scholar
  2. 2.
    Th. Beth, D. Jungnickel, H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1986zbMATHGoogle Scholar
  3. 3.
    A. Beutelspacher, Classical Geometries in CRC Handbook of Combinatorial Designs, C.J. Colbourn, J.H. Dinitz eds., CRC Press, 1996Google Scholar
  4. 4.
    P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1996Google Scholar
  5. 5.
    C. Carlet, Partially Bent Functions, Designs, Codes and Cryptography, 3, 135–145, 1993zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    K. Chakrabarty, J.P. Hayes, Balanced Boolean Functions, IEE Proc.-Comput. Digit. Tech., Vol. 145,No. 1, January 1998Google Scholar
  7. 7.
    K. Chakrabarty, J.P. Hayes, Balance testing and balance-testable design of logic circuits, J. Electron. Testing: Theory Appl., 1996, 8, pp 81–86Google Scholar
  8. 8.
    K. Chakrabarty, J.P. Hayes, Cumulative balance testing of logic circuits, IEEE Trans. VLSI Syst., 1995, 3, pp 72–83CrossRefGoogle Scholar
  9. 9.
    R.E. Blahut, Decoding of cyclic codes and codes on curves, in Handbook of Coding Theory, V.S. Pless and W.C. Huffman Editors, North-Holland, 1998Google Scholar
  10. 10.
    C.J. Colbourn, J.H. Dinitz eds. The CRC Handbook of Combinatorial Designs, CRC Press, 1996.Google Scholar
  11. 11.
    H. Dobbertin, Construction of Bent Functions and Balanced Boolean Functions with High Nonlinearity, Fast Software Encryption, 1994, Lecture Notes in Computer Sciences, Vol. 1008, Springer Verlag.Google Scholar
  12. 12.
    E. Filiol, C. Fontaine, Highly Nonlinear Balanced Boolean Functions with a good Correlation-Immunity, Advances in Cryptology-Eurocrypt’98, Vol 1403, Lecture Notes in Computer Science, Springer Verlag, 1998CrossRefGoogle Scholar
  13. 13.
    P. Frankl, Extremal Set Systems, in Handbook of Combinatorics, R.L. Graham, M. Grötschel and L. Lovász (eds), Elsevier, 1995Google Scholar
  14. 14.
    J.W.P. Hirshfeld, Projective Geometries over Finite Fields, Oxford University Press, 1979Google Scholar
  15. 15.
    F.J. MacWilliams, N.J.A. Sloane. The Theory of Error-Correcting Codes, North-Holland Mathematical library, North-Holland, 1977.Google Scholar
  16. 16.
    B. Preenel, W.V. Leekwijck, L.V. Linden, R. Govaerts, J. Vandewalle, Propagation Characteristics of Boolean Functions, in Advances in Cryptology, Eurocrypt’90, vol 437, Springer Verlag, 1991Google Scholar
  17. 17.
    T. Siegenthaler, Correlation Immunity of Nonlinear Combining Functions for Cryptographic Applications, IEEE Transactions on Information Theory, Vol. IT30,N. 5, 1984, pp 776–780CrossRefMathSciNetGoogle Scholar
  18. 18.
    J.A. Thas, Partial Geometries, in CRC Handbook of Combinatorial Designs, C.J. Colbourn, J.H. Dinitz eds., CRC Press, 1996Google Scholar
  19. 19.
    Y. Zeng, X.M. Zhang, H. Imai, Restriction, Terms and Nonlinearity of Boolean Functions, to appear in the Special Issue on Cryptography, Theoretical Computer Science, in honour of Professor Arto.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Eric Filiol⋆
    • 1
  1. 1.Ecoles Militaires de Saint-Cyr Coëtquidan DGER/CRECSC/DSIGuer Cedex

Personalised recommendations