Advertisement

Combinatorial Structure of Finite Fields with Two Dimensional Modulo Metrics⋆

  • Edgar Martínez-Moro
  • F. JavierGalán-Simón
  • MiguelA. Borges-Trenard
  • Mijail Borges-Quintana
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1746)

Abstract

This paper shows the connection between the combinatorial structure of two dimensional metrics over finite fields ( Shortly, Mannheim and Hexagonal metrics) and some group actions defined over them. We follow the well known approach of P. Delsarte [9] to this problem through the construction of association schemes. Association schemes based on this distances are the basic tools we propose to deal with the metric properties of codes defined over two dimensional metrics and their parameters. We note that some examples of cyclotomic association schemes (which we call M schemes and H schemes respectively) fit properly as weakly metric schemes for these metrics.

Keywords

Finite Field Permutation Group Association Scheme Error Pattern Combinatorial Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Alperin, R.B. Bell, Groups and representations, Graduate Text in Mathematics 162, Springer Verlag (1995).Google Scholar
  2. 2.
    E. Bannai, T. ItoAlgebraic combinatorics I: Association Schemes Benjamin Cummimgs Publishers (1983)Google Scholar
  3. 3.
    N. Biggs, Algebraic Graph theory, 2nd. Edition, Cambridge University Press (1993).Google Scholar
  4. 4.
    B. Bollobás, Modern graph theory, Graduate text in Mathematics. Springer. New York (1998).Google Scholar
  5. 5.
    P. Camion, Codes and Association Schemes: Basic Properties of Association Schemes Relevant to Coding, in “Handbook of Coding Theory vol 2”, pp. 1441–1566, Ed. V.S. Pless, W.C. Huffman, North-Holland 1999Google Scholar
  6. 6.
    Hardy, G.H., Wright, E.M.And introduction to the theory of numbers. Oxford Science Publications. 5th. Edition. (1979)Google Scholar
  7. 7.
    K. Huber, Codes over Gaussian integers., IEEE Trans. on Inf. Theory, 40(1), 207–216 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    K. Huber, The Mac Williams Theorem for Two-dimensional modulo metrics., AAECC, 8(1), 41–48 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    P. Delsarte, An algebraic approach to the association schemes of coding theory., Technical report, Philips Research Laboratory, 1973Google Scholar
  10. 10.
    P. Delsarte, V.I. Levenshtein, Association schemes and coding theory., IEEE Trans. on Inf. Theory, vol. 44, 6, pp.2477–2504. October 1998zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    W. Ledermann, Introduction to group characters., Cambridge University Press, 1986Google Scholar
  12. 12.
    H. Lehmann, Ein vereinheitlichender Ansatz für die Redfield-Polya-de Bruijnsche Abzähltheory., PhD. Thesis Universität Giessen, 1976Google Scholar
  13. 13.
    E. Martínez, F.J. Galán: Combinatorial structure of arithmetic codes., Winter School on Coding and Information Theory 1998 (Ebeltoft, Denmark)Google Scholar
  14. 14.
    E. Martínez, M.A. Borges, M. Borges: Combinatorial structure of rings of complex integers with Mannheim metric., 1st. Workshop on Combinatorics, Geometry, Coding Theory and related areas. CIMAF’99 La Habana, Cuba, March 1999.Google Scholar
  15. 15.
    E. Martínez: Computations on character tables of association schemes., Computer Algebra in Scientific Computing 99, pp. 293–307, Springer-Verlag, 1999.Google Scholar
  16. 16.
    H. Tarnanen, On Abelian Schemes, TUCKS Technical Report no. 88. Turku Centre for Computer Science 1996Google Scholar
  17. 17.
    P. Solé, On the parameters of codes for the Lee and modular distance., Discrete Mathematics 89 (1991), pp. 185–194.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    P. Solé, A Lloyd theorem in weakly metric association schemes., Europ. J. of Combinatorics. 10 189–196 (1989)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Edgar Martínez-Moro
    • 1
  • F. JavierGalán-Simón
    • 2
  • MiguelA. Borges-Trenard
    • 3
  • Mijail Borges-Quintana
    • 3
  1. 1.Dpto. Matemática Aplicada FundamentalUniversidad de ValladolidValladolidSpain
  2. 2.Dpto. Organización y Gestión de EmpresasUniversidad de ValladolidValladolidSpain
  3. 3.Departmento de Matemáticas. Facultad de CienciasUniversidad da OrienteSantiago de CubaCuba

Personalised recommendations