Tensor-Based Trapdoors for CVP and Their Application to Public Key Cryptography (Extended Abstract)

  • Roger Fischlin
  • Jean-Pierre Seifert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1746)


We propose two trapdoors for the Closest-Vector-Problem in lattices (CVP) related to the lattice tensor product. Using these trapdoors we set up a lattice-based cryptosystem which resembles the McEliece scheme.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B86]
    L. Babai: On Lovász’ Lattice Reduction and the Nearest Lattice Point Problem, Combinatorica, vol. 6, pp. 1–13, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [CSe98]
    A. Canteaut and N. Sendrier: Cryptanalysis of the Original McEliece Cryptosystem, Asiacrypt’ 98, LNCS #1541, pp. 187–199, 1998.Google Scholar
  3. [Ca97]
    J.W.S. Cassels: An Introduction to the Geometry of Numbers, Springer Verlag, 1997.Google Scholar
  4. [Co93]
    H. Cohen: A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, vol. 138, Springer Verlag, 1993.Google Scholar
  5. [CS88]
    J.H. Conway and N.J. Sloane: Sphere Packings, Lattices and Groups, Springer Verlag, 1988.Google Scholar
  6. [DKT87]
    P.D. Domich, R. Kannan and L.E. Trotter: Hermite Normal Form Computation using modulo Determinant Arithmetic, Mathematics of Operation Research, vol. 12(1), pp. 50–59, 1987.zbMATHMathSciNetGoogle Scholar
  7. [FK89]
    M.L. Furst and R. Kannan: Succinct Certificates for Almost all Subset Sum Problems, SIAM Journal on Computing, vol. 18(3), pp. 550–558, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [GGH97]
    O. Goldreich, S. Goldwasser, S. Halevi: Public-Key Cryptosystems from Lattice Reduction Problems, Crypto’ 97, LNCS #1294, pp. 112–131.Google Scholar
  9. [K87]
    R. Kannan: Minkowski’s Convex Body Theorem and Integer Programming, Mathematics of Operation Research, vol. 12(3), pp. 415–440, 1987.zbMATHMathSciNetGoogle Scholar
  10. [K93]
    Y. Kitaoka: Arithmetic of Quadratic Forms, Cambridge Tracts in Mathematics, vol. 106, Cambridge University Press, 1993.Google Scholar
  11. [LLL82]
    A.K. Lenstra, H.W. Lenstra and L. Lovász: Factoring Polynomials with Rational Coefficients, Mathematische Annalen, vol. 261, pp. 515–534, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [LLS90]
    J.C. Lagarias, H.W. Lenstra and C.P. Schnorr: Korkin-Zolotarev Bases and successive Minima of a Lattice and its Reciprocal Lattice, Combinatorica, vol. 10, pp. 333–348, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [L96]
    H. Lütkepohl: Handbook of Matrices, John Wiley & Son, England, 1996.zbMATHGoogle Scholar
  14. [MS77]
    F.J. Macwilliams and N.J. Sloane: The Theory of Error Correcting Codes, Mathematical Library Vol. 16, North-Holland, 1977.Google Scholar
  15. [M96]
    J. Martinet: Les Réseaux Parfaits des Espaces Euclidiens, Masson, 1996.Google Scholar
  16. [MO90]
    J.E. Mazo and A.M. Oodlyzko: Lattice Points in high-dimensional Spheres, Monatshefte Mathematik, vol. 110(1), pp. 47–61, 1990.zbMATHCrossRefGoogle Scholar
  17. [N99]
    P. Nguyen: Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto’ 97, Crypto’ 99, LNCS #???.Google Scholar
  18. [OL97]
    E. O’brien and C.R. Leedham-Green: Recognising Tensor Products of Matrix Groups, Int. Journal Algebra Computing, vol. 7, pp. 541–559, 1997.CrossRefMathSciNetGoogle Scholar
  19. [PS87]
    A. Paz and C.P. Schnorr: Approximating Integer Lattices by Lattices with cyclic Factor Group, ICALP, LNCS #267, pp. 386–393, 1987.Google Scholar
  20. [R70]
    S.M. Reddy: On Decoding Iterated Codes, IEEE Transaction on Information Theory, Vol. 16(5), pp. 624–627, 1970.zbMATHCrossRefGoogle Scholar
  21. [S87]
    C.P. Schnorr: A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms, Theoretical Computer Science, vol. 53, pp. 201–224, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [S94]
    C.P. Schnorr: Block Reduced Lattice Bases and Successive Minima, Combinatorics, Probability and Computing, vol. 3, pp. 507–522, 1994.zbMATHMathSciNetCrossRefGoogle Scholar
  23. [SH95]
    C.P. Schnorr and H.H. Hüorner: Attacking the Chor-Rivest Cryptosystem by improved Lattice Reduction, Eurocrypt’ 95, LNCS #921, pp. 1–12, 1995.Google Scholar
  24. [SF+97]
    C.P. Schnorr, M. Fischlin, R. Fischlin, H. Koy and A. May: Lattice Attacks on the GGH Cryptosystem, Crypto’ 97 Rump Session, 1997.Google Scholar
  25. [Sl82]
    N.J.A. Sloane: Encryption by Random Rotations, Workshop on Cryptography Burg Feuerstein, 1982, LNCS #149, pp. 71–128, 1983.CrossRefGoogle Scholar
  26. [St95]
    D.R. Stinson: Cryptography: Theory and Practice, CRC Press, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Roger Fischlin
    • 1
  • Jean-Pierre Seifert
    • 1
  1. 1.Fachbereich Mathematik (AG 7.2)J.W. Goethe-Universität Frankfurt am MainFrankfurt/MainGermany

Personalised recommendations