Advertisement

Low Complexity Soft-Decision Sequential Decoding Using Hybrid Permutation for Reed-Solomon Codes

  • Min-seok Oh
  • Peter Sweeney
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1746)

Abstract

We present a soft-decision decoding method for Reed-Solomon codes (RS codes) using both cyclic and squaring permutations. These permutations are used to provide a convenient sequence which is predicted to have relatively low complex error pattern with respect to a modified Fano sequential algorithm[1]. In order to preserve bit-level soft-decision values, each sequence of those permutation groups must keep equal weight distribution in symbol and bit level. Trellis construction is based on Wolf’s method[2] and a binary systematic parity check matrix of RS codes is used for bit-level decoding[9]. In simulation results, it is shown that a hybrid of those two permutations can be used for low complexity decoding approaching maximum likelihood performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fano, R.: A Heuristic Discussion of Probabilistic Decoding. IEEE Trans. Inform. Theory. IT-9. (1963) 64–74CrossRefMathSciNetGoogle Scholar
  2. 2.
    Wolf, J.K.: Efficient maximum likelihood decoding of linear block codes using a trellis. IEEE Trans. Inform. Theory. IT-20 (1978) 76–80CrossRefGoogle Scholar
  3. 3.
    Reed, I.S. and Solomon, G.: Polynomial codes over certain finite fields,“ SIAM Journal on Applied Mathematics. 8 (1960) 300–304zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Forney, G.D.: Generalized minimum distance decoding. IEEE Trans. Inform. Theory, IT-12 (1966) 125–131CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chase, D.: A class of algorithm for decoding clock codes with channel measurement information. IEEE Trans. Inform. Theory. IT-18 (1972) 170–182CrossRefMathSciNetGoogle Scholar
  6. 6.
    Shin, S.: Trellis decoding of Reed-Solomon codes. Ph.D. Thesis, (1994)Google Scholar
  7. 7.
    Matis, K.R. and Modestino, J.W.: Reduced-search soft-decision trellis decoding of linear block codes. IEEE Trans. Inform. Theory. 39 (1991) 440–444Google Scholar
  8. 8.
    Vardy, A. and Be’ery, Y.: Bit level soft-decision decoding of Reed-Solomon codes. IEEE Trans. Inform. Theory. IT-28 (1982) 349–355Google Scholar
  9. 9.
    Oh, M. and Sweeney, P.: Bit-level soft decision sequential decoding for RS codes. WCC’99. (1999) 111–120Google Scholar
  10. 10.
    Jacob, I. and Berlekamp, E..: A lower bound to the distribution of communication for Sequential Decoding. EEE Trans. Inform. Theory. IT-13 (1967) 167–174CrossRefGoogle Scholar
  11. 11.
    Savage, J.: The distribution of the sequential decoding computational time. IEEE Trans. Inform. Theory. IT-12 (1966) 143–147CrossRefGoogle Scholar
  12. 12.
    Anderson, J.: Sequential decoding based on an error criterion. IEEE Trans. Inform. Theory. 40 (1994) 546–554CrossRefGoogle Scholar
  13. 13.
    Martin, I., Honary, B., and Farrell, P.G.: Modified minimum weight decoding for RS codes. ELECTRONICS LETTERS. 31 (1995) 713–714.CrossRefGoogle Scholar
  14. 14.
    Pei, D., Wang, C., and Omura, J.: Normal basis of finite field GF(2 m). IEEE Trans. Inform. Theory. IT-32 (1986) 285–287MathSciNetGoogle Scholar
  15. 15.
    Perlis, S.: Normal basis of cyclic fields of prime-power degree. Duke Math. J. 9 (1942) 507–517zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Oh, M, and Sweeney, P.: Squaring permutation sequential decoding on normal basis for RS codes. ELECTRONICS LETTERS. 35 (1999) 1325–1326CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Min-seok Oh
    • 1
  • Peter Sweeney
    • 2
  1. 1.CCSR, University of SurreySurreyUK
  2. 2.CCSR, University of SurreySurreyUK

Personalised recommendations