Applications of Exponential Sums in Communications Theory

  • Kenneth G. Paterson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1746)


We provide an introductory overview of how exponential sums, and bounds for them, have been exploited by coding theorists and communications engineers.


Orthogonal Frequency Division Multiplex Orthogonal Frequency Division Multiplex System Orthogonal Frequency Division Multiplex Signal Galois Ring Multiplicative Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Alard and R. Lasalle. Principles of modulation and channel coding for digital broadcasting for mobile receivers. EBU Review, 224: 47–69, Aug. 1987.Google Scholar
  2. [2]
    J.A.C. Bingham. Multicarrier modulation for data transmission: an idea whose time has come. IEEE Commun. Magazine, 28(1): 5–14, May 1990.CrossRefGoogle Scholar
  3. [3]
    S. Boztas and P.V. Kumar. Binary sequences with Gold-like correlation but larger linear span. IEEE Trans. Inform. Theory, IT-40(2): 532–537, March 1994.CrossRefGoogle Scholar
  4. [4]
    L. Carlitz and S. Uchiyama. Bounds for exponential sums. Duke Math. J., 24:37–41, 1957.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    P.S. Chow, J.M. Cioffi, and J.A.C. Bingham. DMT-based ADSL: concept, architecture, and performance. In IEE Colloquium on ‘High Speed Access Technology and Services, Including Video-on-Demand’, pages 3/1–6, Oct. 1994.Google Scholar
  6. [6]
    L.J. Cimini, Jr. Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans. Commun., 33:665–675, July 1985.CrossRefGoogle Scholar
  7. [7]
    J.A. Davis and J. Jedwab. Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes. IEEE Trans. Inform. Theory, to appear Nov. 1999.Google Scholar
  8. [8]
    P. Deligne. FrLa conjecture du W. Publ. Math. IHES, 43: 273–307, 1974.MathSciNetGoogle Scholar
  9. [9]
    R.C. Dixon. Spread Spectrum Systems with Commercial Applications (3rd edition). Wiley-Interscience, New York, 1994.Google Scholar
  10. [10]
    H. Dobbertin. Almost perfect nonlinear power functions on GF(2n): the Welch case. IEEE Trans. Inform. Theory, IT-45: 1271–1275, 1999.CrossRefMathSciNetGoogle Scholar
  11. [11]
    H. Dobbertin. Almost perfect nonlinear power functions on GF(2n): the Niho case. Information and Computation, to appear.Google Scholar
  12. [12]
    B. Dwork. On the rationality of the zeta function. Amer. J. Math., 82:631–648, 1959.CrossRefMathSciNetGoogle Scholar
  13. [13]
    P. Fan and M. Darnell. Sequence design for communications applications. John Wiley and Sons, New York, 1996.Google Scholar
  14. [14]
    H. Fukumasa, R. Kohno, and H. Imai. Pseudo noise sequences for tracking and data relay satellite and related systems. Trans. of IEICE, E(5): 1137–1144, May 1991.Google Scholar
  15. [15]
    R. Gold. Optimal binary sequences for spread spectrum multiplexing. IEEE Trans. Inform. Theory, IT-13: 619–621, 1967.CrossRefGoogle Scholar
  16. [16]
    R. Gold. Maximal recursive sequences with 3-valued cross-correlation functions. 0IEEE Trans. Inform. Theory, IT-14: 154–156, 1968.CrossRefGoogle Scholar
  17. [17]
    G. Gong. Theory and applications of q-ary interleaved sequences. IEEE Trans. Inform. Theory, IT-41(2): 400–411, March 1995.CrossRefGoogle Scholar
  18. [18]
    A.R. Hammons, Jr., P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, and P. Solé. The ℤ4-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory, IT-40: 301–319, 1994.CrossRefGoogle Scholar
  19. [19]
    T. Helleseth. On the covering radius of cyclic linear codes and arithmetic codes. Discrete. Appl. Math., 11: 157–173, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    H. Hollmann and Q. Xiang. A proof of the Welch and Niho conjectures on crosscorrelations of binary m-sequences. preprint, 1999.Google Scholar
  21. [21]
    N.E. Hurt. Exponential sums and coding theory: A review. Acta Applicandae Mathematicae, 46: 49–91, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory (2nd edition), Graduate Texts in Mathematics Vol. 84. Springer, Berlin, 1990.Google Scholar
  23. [23]
    D. Jungnickel. Finite Fields-Structure and Arithmetics. B.I. Wissenschaftsverlag, Mannheim, 1993.Google Scholar
  24. [24]
    A.M. Klapper. d-form sequences: Families of sequences with low correlation values and large linear spans. IEEE Trans. Inform. Theory, IT-41(2): 423–431, March 1995.CrossRefMathSciNetGoogle Scholar
  25. [25]
    P.V. Kumar, T. Helleseth, and A.R. Calderbank. An upper bound for Weil exponential sums over Galois rings and applications. IEEE Trans. Inform. Theory, IT-41(2): 456–468, March 1995.CrossRefMathSciNetGoogle Scholar
  26. [26]
    P.V. Kumar, T. Helleseth, A.R. Calderbank, and A.R. Hammons Jr. Large families of quaternary sequences with low correlation. IEEE Trans. Inform. Theory, IT-42(2): 579–592, March 1996.CrossRefMathSciNetGoogle Scholar
  27. [27]
    P.V. Kumar and O. Moreno. Prime-phase sequences with periodic correlation properties better than binary sequences. IEEE Trans. Inform. Theory, IT-37(3): 603–616, May 1991.CrossRefMathSciNetGoogle Scholar
  28. [28]
    G. Lachaud and J. Wolfmann. FrSommes de kloosterman, coubes elliptiques et codes cycliques en caracteristique 2. Comptes Rendu Academie Science Paris, 305: 881–883, 1987.zbMATHMathSciNetGoogle Scholar
  29. [29]
    J. Lahtonen. On the odd and aperiodic correlation properties of the Kasami sequences. IEEE Trans. Inform. Theory, IT-41(5): 1506–1508, Sept. 1995.CrossRefMathSciNetGoogle Scholar
  30. [30]
    V.I. Levenshtein. Bounds on the maximal cardinality of a code with bounded modulus of the innner product. Soviet Math. Dokl., 25(2): 526–531, 1982.Google Scholar
  31. [31]
    R. Lidl and H. Niederreiter. Introduction to finite fields and their applications (2nd Edition). Cambridge University Press, Cambridge, 1994.Google Scholar
  32. [32]
    R. Lidl and H. Niederreiter. Finite Fields. Encyclopedia of Mathematics and Its Applications, Vol. 20 (2nd Edition), Cambridge University Press, Cambridge, 1997.Google Scholar
  33. [33]
    S. Litsyn and A. Tietäväinen. Character sum constructions of constrained errorcorrecting codes. AAECC, 5: 45–51, 1994.zbMATHCrossRefGoogle Scholar
  34. [34]
    F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North Holland, Amsterdam, 1977.Google Scholar
  35. [35]
    R.J. McEliece. Finite fields for computer scientists and engineers. Kluwer, Boston, 1987.zbMATHGoogle Scholar
  36. [36]
    C.J. Moreno. Algebraic Curves over Finite Fields. Cambridge University Press, Cambridge, 1991.zbMATHGoogle Scholar
  37. [37]
    O. Moreno and P.V. Kumar. Minimum distance bounds for cyclic codes and Deligne’s theorem. IEEE Trans. Inform. Theory, IT-39(5): 1524–1534, Sept. 1993.CrossRefMathSciNetGoogle Scholar
  38. [38]
    O. Moreno and C.J. Moreno. The MacWilliams-Sloane conjecture on the tightness of the Carlitz-Uchiyama bound and the weights of duals of BCH codes. IEEE Trans. Inform. Theory, IT-40(6): 1894–1907, Nov. 1994.CrossRefMathSciNetGoogle Scholar
  39. [39]
    O. Moreno, V.A. Zinoviev, and P.V. Kumar. An extension of the Weil-Carlitz-Uchiyama bound. Finite Fields and their Applications, 1: 360–371, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    J.-S. No. Generalization of GMW sequences and No sequences. IEEE Trans. Inform. Theory, IT-42(1): 260–262, Jan. 1996.MathSciNetGoogle Scholar
  41. [41]
    J.-S. No and P.V. Kumar. A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span. IEEE Trans. Inform. Theory, IT-35(2):371–379, March 1989.CrossRefGoogle Scholar
  42. [42]
    J.D. Olsen, R.A. Scholtz, and L.R. Welch. Bent-function sequences. IEEE Trans. Inform. Theory, IT-28(6): 858–864, Nov. 1982.CrossRefMathSciNetGoogle Scholar
  43. [43]
    K.G. Paterson. Binary sequence sets with favourable correlation properties from difference sets and MDS codes. IEEE Transactions on Information Theory, 44:172–180, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    K.G. Paterson. Generalised Reed-Muller codes and power control in OFDM. IEEE Transactions on Information Theory, to appear.Google Scholar
  45. [45]
    K.G. Paterson and P.J.G. Lothian. Bounds on partial correlations of sequences. IEEE Transactions on Information Theory, 44:1164–1175, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  46. [46]
    K.G. Paterson and V. Tarokh. On the existence and construction of good codes with low peak-to-average power ratios. Hewlett-Packard Laboratories Technical Report HPL-1999-51, submitted, 1999.
  47. [47]
    V.S. Pless and W. Huffman, eds. Handbook of Coding Theory Vols. I & II. Elsevier, 1998.Google Scholar
  48. [48]
    M.B. Pursley. On the mean-square partial correlation of periodic sequences. In Proc. of Conf. on Information Sciences and Systems, pages 377–379, John Hopkins Univ., Baltimore MD, March 28-30 1979.Google Scholar
  49. [49]
    M.B. Pursley, D.V. Sarwate, and T.U. Basar. Partial correlation effects in direct-sequence spread-spectrum multiple-access communications systems. IEEE Trans. Commun., COM-32(5): 567–573, May 1984.Google Scholar
  50. [50]
    L.C. Quynh and S. Prasad. New class of sequences sets with good auto-and crosscorrelation functions. IEE Proc. (F), 133(3): 281–287, June 1986.Google Scholar
  51. [51]
    D.V. Sarwate. Bounds on crosscorrelation and autocorrelation of sequences. IEEE Trans. Inform. Theory, IT-25(6): 720–724, Nov. 1979.CrossRefMathSciNetGoogle Scholar
  52. [52]
    D.V. Sarwate. An upper bound on the aperiodic autocorrelation function for a maximal-length sequence. IEEE Trans. Inform. Theory, IT-30(4): 685–687, July 1984.CrossRefMathSciNetGoogle Scholar
  53. [53]
    D.V. Sarwate and M.B. Pursley. Cross-correlation properties of pseudorandom and related sequences. Proc. IEEE, 68: 593–618, May 1980.CrossRefGoogle Scholar
  54. [54]
    W. Schmidt. Equations Over Finite Fields-An Elementary Approach. Lecture Notes in Mathematics, Vol. 536. Springer, Berlin, 1976.Google Scholar
  55. [55]
    R.A. Scholtz. Criteria for sequence set design in CDMA communications. In G. Cohen, T. Mora, and O. Moreno, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-10), pages 57–65, Puerto Rico, May 10-14 1993. Springer-Verlag, Berlin.Google Scholar
  56. [56]
    R.A. Scholtz and L.R. Welch. GMW sequences. IEEE Trans. Inform. Theory, IT-30(3): 548–553, Nov. 1984.CrossRefMathSciNetGoogle Scholar
  57. [57]
    M.R. Schroeder. Number Theory in Science and Communication (3rd edition). Springer, Berlin, 1997.zbMATHGoogle Scholar
  58. [58]
    A.G. Shanbag, P.V. Kumar, and T. Helleseth. Upper bound for a hybrid sum over Galois rings with applications to aperiodic correlation for some q-ary sequences. IEEE Trans. Inform. Theory, IT-42: 250–254, 1996.CrossRefGoogle Scholar
  59. [59]
    V.M. Sidelnikov. On mutual correlation of sequences. Soviet Math. Dokl., 12(1): 197–201, 1971.Google Scholar
  60. [60]
    M.K. Simon, J.K. Omura, R.A. Scholtz, and B.K. Levitt. Spread Spectrum Communications, Vol. 1. Computer Science Press, Rockville, MD, 1985.Google Scholar
  61. [61]
    H. Stichtenoth. Algebraic Function Fields and Codes. Springer-Verlag, New York, 1993.zbMATHGoogle Scholar
  62. [62]
    A. Tietäväinen. An asymptotic bound on the covering radii of binary bch codes. IEEE Trans. Inform. Theory., IT-36: 211–213, 1990.CrossRefGoogle Scholar
  63. [63]
    A. Tietäväinen. Vinogradov’s method and some applications. Technical Report TUCS No. 28, Turku Centre for Computer Science, Turku, Finland, 1996.Google Scholar
  64. [64]
    P. Udaya and M.U. Siddiqi. Optimal biphase sequences with large linear complexiy derived from sequences over ℤ4. IEEE Trans. Inform. Theory, IT-42(1): 206–216, Jan. 1996.CrossRefMathSciNetGoogle Scholar
  65. [65]
    I.M. Vinogradov. Elements of Number Theory. Dover, New York, 1954.zbMATHGoogle Scholar
  66. [66]
    A. Weil. Sur les courbes algébriques et les variétés qui s’en déduisent, Actualités Sci. et Ind. no. 1041. Hermann, Paris, 1948.Google Scholar
  67. [67]
    L.R. Welch. Lower bounds on the maximum correlation of signals. IEEE Trans. Inform. Theory, IT-20(3): 397–399, May 1974.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Kenneth G. Paterson
    • 1
  1. 1.Mathematics, Cryptography and Security GroupHewlett-Packard LaboratoriesBristolUK

Personalised recommendations