Skip to main content

Applications of Exponential Sums in Communications Theory

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1746))

Abstract

We provide an introductory overview of how exponential sums, and bounds for them, have been exploited by coding theorists and communications engineers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Alard and R. Lasalle. Principles of modulation and channel coding for digital broadcasting for mobile receivers. EBU Review, 224: 47–69, Aug. 1987.

    Google Scholar 

  2. J.A.C. Bingham. Multicarrier modulation for data transmission: an idea whose time has come. IEEE Commun. Magazine, 28(1): 5–14, May 1990.

    Article  Google Scholar 

  3. S. Boztas and P.V. Kumar. Binary sequences with Gold-like correlation but larger linear span. IEEE Trans. Inform. Theory, IT-40(2): 532–537, March 1994.

    Article  MATH  Google Scholar 

  4. L. Carlitz and S. Uchiyama. Bounds for exponential sums. Duke Math. J., 24:37–41, 1957.

    Article  MathSciNet  MATH  Google Scholar 

  5. P.S. Chow, J.M. Cioffi, and J.A.C. Bingham. DMT-based ADSL: concept, architecture, and performance. In IEE Colloquium on ‘High Speed Access Technology and Services, Including Video-on-Demand’, pages 3/1–6, Oct. 1994.

    Google Scholar 

  6. L.J. Cimini, Jr. Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans. Commun., 33:665–675, July 1985.

    Article  Google Scholar 

  7. J.A. Davis and J. Jedwab. Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes. IEEE Trans. Inform. Theory, to appear Nov. 1999.

    Google Scholar 

  8. P. Deligne. FrLa conjecture du W. Publ. Math. IHES, 43: 273–307, 1974.

    Article  Google Scholar 

  9. R.C. Dixon. Spread Spectrum Systems with Commercial Applications (3rd edition). Wiley-Interscience, New York, 1994.

    Google Scholar 

  10. H. Dobbertin. Almost perfect nonlinear power functions on GF(2n): the Welch case. IEEE Trans. Inform. Theory, IT-45: 1271–1275, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Dobbertin. Almost perfect nonlinear power functions on GF(2n): the Niho case. Information and Computation, to appear.

    Google Scholar 

  12. B. Dwork. On the rationality of the zeta function. Amer. J. Math., 82:631–648, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Fan and M. Darnell. Sequence design for communications applications. John Wiley and Sons, New York, 1996.

    Google Scholar 

  14. H. Fukumasa, R. Kohno, and H. Imai. Pseudo noise sequences for tracking and data relay satellite and related systems. Trans. of IEICE, E(5): 1137–1144, May 1991.

    Google Scholar 

  15. R. Gold. Optimal binary sequences for spread spectrum multiplexing. IEEE Trans. Inform. Theory, IT-13: 619–621, 1967.

    Article  MATH  Google Scholar 

  16. R. Gold. Maximal recursive sequences with 3-valued cross-correlation functions. 0IEEE Trans. Inform. Theory, IT-14: 154–156, 1968.

    Article  MATH  Google Scholar 

  17. G. Gong. Theory and applications of q-ary interleaved sequences. IEEE Trans. Inform. Theory, IT-41(2): 400–411, March 1995.

    Article  MathSciNet  MATH  Google Scholar 

  18. A.R. Hammons, Jr., P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, and P. Solé. The ℤ4-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory, IT-40: 301–319, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Helleseth. On the covering radius of cyclic linear codes and arithmetic codes. Discrete. Appl. Math., 11: 157–173, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Hollmann and Q. Xiang. A proof of the Welch and Niho conjectures on crosscorrelations of binary m-sequences. preprint, 1999.

    Google Scholar 

  21. N.E. Hurt. Exponential sums and coding theory: A review. Acta Applicandae Mathematicae, 46: 49–91, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory (2nd edition), Graduate Texts in Mathematics Vol. 84. Springer, Berlin, 1990.

    Google Scholar 

  23. D. Jungnickel. Finite Fields-Structure and Arithmetics. B.I. Wissenschaftsverlag, Mannheim, 1993.

    Google Scholar 

  24. A.M. Klapper. d-form sequences: Families of sequences with low correlation values and large linear spans. IEEE Trans. Inform. Theory, IT-41(2): 423–431, March 1995.

    Article  MathSciNet  MATH  Google Scholar 

  25. P.V. Kumar, T. Helleseth, and A.R. Calderbank. An upper bound for Weil exponential sums over Galois rings and applications. IEEE Trans. Inform. Theory, IT-41(2): 456–468, March 1995.

    Article  MathSciNet  MATH  Google Scholar 

  26. P.V. Kumar, T. Helleseth, A.R. Calderbank, and A.R. Hammons Jr. Large families of quaternary sequences with low correlation. IEEE Trans. Inform. Theory, IT-42(2): 579–592, March 1996.

    Article  MathSciNet  MATH  Google Scholar 

  27. P.V. Kumar and O. Moreno. Prime-phase sequences with periodic correlation properties better than binary sequences. IEEE Trans. Inform. Theory, IT-37(3): 603–616, May 1991.

    Article  MATH  Google Scholar 

  28. G. Lachaud and J. Wolfmann. FrSommes de kloosterman, coubes elliptiques et codes cycliques en caracteristique 2. Comptes Rendu Academie Science Paris, 305: 881–883, 1987.

    MATH  Google Scholar 

  29. J. Lahtonen. On the odd and aperiodic correlation properties of the Kasami sequences. IEEE Trans. Inform. Theory, IT-41(5): 1506–1508, Sept. 1995.

    Article  MathSciNet  MATH  Google Scholar 

  30. V.I. Levenshtein. Bounds on the maximal cardinality of a code with bounded modulus of the innner product. Soviet Math. Dokl., 25(2): 526–531, 1982.

    Google Scholar 

  31. R. Lidl and H. Niederreiter. Introduction to finite fields and their applications (2nd Edition). Cambridge University Press, Cambridge, 1994.

    Book  MATH  Google Scholar 

  32. R. Lidl and H. Niederreiter. Finite Fields. Encyclopedia of Mathematics and Its Applications, Vol. 20 (2nd Edition), Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  33. S. Litsyn and A. Tietäväinen. Character sum constructions of constrained errorcorrecting codes. AAECC, 5: 45–51, 1994.

    Article  MATH  Google Scholar 

  34. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North Holland, Amsterdam, 1977.

    Google Scholar 

  35. R.J. McEliece. Finite fields for computer scientists and engineers. Kluwer, Boston, 1987.

    Book  MATH  Google Scholar 

  36. C.J. Moreno. Algebraic Curves over Finite Fields. Cambridge University Press, Cambridge, 1991.

    Book  MATH  Google Scholar 

  37. O. Moreno and P.V. Kumar. Minimum distance bounds for cyclic codes and Deligne’s theorem. IEEE Trans. Inform. Theory, IT-39(5): 1524–1534, Sept. 1993.

    Article  MathSciNet  MATH  Google Scholar 

  38. O. Moreno and C.J. Moreno. The MacWilliams-Sloane conjecture on the tightness of the Carlitz-Uchiyama bound and the weights of duals of BCH codes. IEEE Trans. Inform. Theory, IT-40(6): 1894–1907, Nov. 1994.

    Article  MathSciNet  MATH  Google Scholar 

  39. O. Moreno, V.A. Zinoviev, and P.V. Kumar. An extension of the Weil-Carlitz-Uchiyama bound. Finite Fields and their Applications, 1: 360–371, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  40. J.-S. No. Generalization of GMW sequences and No sequences. IEEE Trans. Inform. Theory, IT-42(1): 260–262, Jan. 1996.

    MATH  Google Scholar 

  41. J.-S. No and P.V. Kumar. A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span. IEEE Trans. Inform. Theory, IT-35(2):371–379, March 1989.

    Article  MATH  Google Scholar 

  42. J.D. Olsen, R.A. Scholtz, and L.R. Welch. Bent-function sequences. IEEE Trans. Inform. Theory, IT-28(6): 858–864, Nov. 1982.

    Article  MathSciNet  MATH  Google Scholar 

  43. K.G. Paterson. Binary sequence sets with favourable correlation properties from difference sets and MDS codes. IEEE Transactions on Information Theory, 44:172–180, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  44. K.G. Paterson. Generalised Reed-Muller codes and power control in OFDM. IEEE Transactions on Information Theory, to appear.

    Google Scholar 

  45. K.G. Paterson and P.J.G. Lothian. Bounds on partial correlations of sequences. IEEE Transactions on Information Theory, 44:1164–1175, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  46. K.G. Paterson and V. Tarokh. On the existence and construction of good codes with low peak-to-average power ratios. Hewlett-Packard Laboratories Technical Report HPL-1999-51, submitted, 1999. http://www.hpl.hp.com/techreports/1999/HPL-1999-51.html.

  47. V.S. Pless and W. Huffman, eds. Handbook of Coding Theory Vols. I & II. Elsevier, 1998.

    Google Scholar 

  48. M.B. Pursley. On the mean-square partial correlation of periodic sequences. In Proc. of Conf. on Information Sciences and Systems, pages 377–379, John Hopkins Univ., Baltimore MD, March 28-30 1979.

    Google Scholar 

  49. M.B. Pursley, D.V. Sarwate, and T.U. Basar. Partial correlation effects in direct-sequence spread-spectrum multiple-access communications systems. IEEE Trans. Commun., COM-32(5): 567–573, May 1984.

    Google Scholar 

  50. L.C. Quynh and S. Prasad. New class of sequences sets with good auto-and crosscorrelation functions. IEE Proc. (F), 133(3): 281–287, June 1986.

    Google Scholar 

  51. D.V. Sarwate. Bounds on crosscorrelation and autocorrelation of sequences. IEEE Trans. Inform. Theory, IT-25(6): 720–724, Nov. 1979.

    Article  MathSciNet  MATH  Google Scholar 

  52. D.V. Sarwate. An upper bound on the aperiodic autocorrelation function for a maximal-length sequence. IEEE Trans. Inform. Theory, IT-30(4): 685–687, July 1984.

    Article  MathSciNet  MATH  Google Scholar 

  53. D.V. Sarwate and M.B. Pursley. Cross-correlation properties of pseudorandom and related sequences. Proc. IEEE, 68: 593–618, May 1980.

    Article  Google Scholar 

  54. W. Schmidt. Equations Over Finite Fields-An Elementary Approach. Lecture Notes in Mathematics, Vol. 536. Springer, Berlin, 1976.

    Google Scholar 

  55. R.A. Scholtz. Criteria for sequence set design in CDMA communications. In G. Cohen, T. Mora, and O. Moreno, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-10), pages 57–65, Puerto Rico, May 10-14 1993. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  56. R.A. Scholtz and L.R. Welch. GMW sequences. IEEE Trans. Inform. Theory, IT-30(3): 548–553, Nov. 1984.

    Article  MathSciNet  MATH  Google Scholar 

  57. M.R. Schroeder. Number Theory in Science and Communication (3rd edition). Springer, Berlin, 1997.

    Book  MATH  Google Scholar 

  58. A.G. Shanbag, P.V. Kumar, and T. Helleseth. Upper bound for a hybrid sum over Galois rings with applications to aperiodic correlation for some q-ary sequences. IEEE Trans. Inform. Theory, IT-42: 250–254, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  59. V.M. Sidelnikov. On mutual correlation of sequences. Soviet Math. Dokl., 12(1): 197–201, 1971.

    MathSciNet  Google Scholar 

  60. M.K. Simon, J.K. Omura, R.A. Scholtz, and B.K. Levitt. Spread Spectrum Communications, Vol. 1. Computer Science Press, Rockville, MD, 1985.

    Google Scholar 

  61. H. Stichtenoth. Algebraic Function Fields and Codes. Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  62. A. Tietäväinen. An asymptotic bound on the covering radii of binary bch codes. IEEE Trans. Inform. Theory., IT-36: 211–213, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  63. A. Tietäväinen. Vinogradov’s method and some applications. Technical Report TUCS No. 28, Turku Centre for Computer Science, Turku, Finland, 1996.

    Google Scholar 

  64. P. Udaya and M.U. Siddiqi. Optimal biphase sequences with large linear complexiy derived from sequences over ℤ4. IEEE Trans. Inform. Theory, IT-42(1): 206–216, Jan. 1996.

    Article  MATH  Google Scholar 

  65. I.M. Vinogradov. Elements of Number Theory. Dover, New York, 1954.

    MATH  Google Scholar 

  66. A. Weil. Sur les courbes algébriques et les variétés qui s’en déduisent, Actualités Sci. et Ind. no. 1041. Hermann, Paris, 1948.

    MATH  Google Scholar 

  67. L.R. Welch. Lower bounds on the maximum correlation of signals. IEEE Trans. Inform. Theory, IT-20(3): 397–399, May 1974.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paterson, K.G. (1999). Applications of Exponential Sums in Communications Theory. In: Walker, M. (eds) Cryptography and Coding. Cryptography and Coding 1999. Lecture Notes in Computer Science, vol 1746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46665-7_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-46665-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66887-9

  • Online ISBN: 978-3-540-46665-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics