Skip to main content

Decoherence and Einselection

The Rough Guide

  • Conference paper
  • First Online:
Decoherence: Theoretical, Experimental, and Conceptual Problems

Part of the book series: Lecture Notes in Physics ((LNP,volume 538))

Abstract

The roles of decoherence and environment-induced superselection in the emergence of the classical from the quantum substrate are described. The stability of correlations between the einselected quantum pointer states and the environment allows them to exist almost as objectively as if they were classical: There are ways of finding out what is the pointer state of the system which utilize redundancy of their correlations with the environment, and which leave einselected states essentially unperturbed. This relatively objective existence of certain quantum states facilitates operational definition of probabilities in the quantum setting. Moreover, once the states that ‘exist’ and can be ‘found out’ are in place, a ‘collapse’ in the traditional sense is no longer necessary — in effect, it has already happened. The records of the observer will contain evidence of an effective collapse. The role of the preferred states in the processing and storage of information is emphasized. The existential interpretation based on the relatively objective existence of stable correlations between the einselected states of observers memory and in the outside Universe is formulated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zurek, W. H., 1981, Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?, Phys. Rev. D24, 1516–1525.

    Google Scholar 

  2. Zurek, W. H., 1982, Environment-inducedsuperselection rules, Phys. Rev. D26, 1862–1880.

    Google Scholar 

  3. Zurek, W. H., 1984, Reduction of the wave packet: How long does it take?, LAUR 84-2750, pp. 145–149 in Frontiers in Nonequilibrium Statistical Physics, edited by G. T. Moore and M. O. Scully, (Plenum, New York 1986).

    Google Scholar 

  4. Joos, E., and Zeh, H. D., 1985, The emergence of classical properties through interaction with the environment, Z. Phys. B59, 223–243.

    Google Scholar 

  5. Walls, D. F., Collet, M. J., and Milburn, G. J., 1985, Analysis of a quantum measurement, Phys. Rev. D32, 3208–3215.

    Google Scholar 

  6. Caldeira, A. O., and Leggett, A. J., 1985, Influence of damping on quantum interference: An exactly soluble model, Phys. Rev. A31, 1059–1066.

    Google Scholar 

  7. Unruh, W. G., and Zurek, W. H., 1989, Reduction of a wave packet in quantum Brownian motion, Phys. Rev. D40, 1071–1094.

    Google Scholar 

  8. Zurek, W. H., 1991, Decoherence and the transition from quantum to classical, Physics Today 44 (Oct.), 36–44.

    Google Scholar 

  9. Zeh, H. D., 1993, There are no quantum jumps, nor are there particles!, Phys. Lett. A172, 189–192.

    Google Scholar 

  10. Giulini, D., Joos, E., Kiefer, C, Kupsch, J., Stamatescu, I.-O., Zeh, H. D., 1996, Decoherence and the appearance of a classical world in quantum theory (Springer, Berlin)

    Google Scholar 

  11. Zurek, W. H., 1993, Preferred states, predictability, classicality and the environment-induced decoherence, Progr. Theor. Phys. 89, 281–312.

    Google Scholar 

  12. Zurek, W. H., Habib, S., and Paz, J. P., 1993, Coherent states via decoherence, Phys. Rev. Lett. 70, 1187–1190.

    Google Scholar 

  13. Tegmark, M., and Shapiro, H. S., 1994, Decoherence produces coherent states: An explicit proof for harmonic chains, Phys. Rev. E50, 2538–2547.

    Google Scholar 

  14. Gallis, M. R., 1996, The emergence of classicality via decoherence described by Lindblad operators, Phys. Rev. A53, 655–660.

    Google Scholar 

  15. Hu, B. L., Paz, J. P., and Zhang, Y., 1992, Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise, Phys. Rev. D45, 2843–2861.

    Google Scholar 

  16. Paz, J. P., Habib, S., and Zurek, W. H., 1993, Reduction of the wave packet: Preferred observables and decoherence time scale, Phys. Rev. D47, 488–501.

    Google Scholar 

  17. Anglin, J. R., and Zurek, W. H., 1996, Decoherence of quantum fields: Pointer states and predictability, Phys. Rev. D53, 7327–7335. Anglin, J. R., Paz, J. P., and Zurek, W. H., 1997, Deconstructing Decoherence, ibid., A55, 4041-4049.

    Google Scholar 

  18. Griffiths, R. B., 1984, J. Stat. Phys. 36, 219–272; Griffiths, R. B., 1996 Phys. Rev. A54 2759-2774.

    Google Scholar 

  19. Gell-Mann, M., and Hartle, J. B., 1990, Quantum mechanics in the light of quantum cosmology, in Complexity Entropy, and the Physics of Information, edited by W. H. Zurek, Addison-Wesley, Reading, pp. 425–458.

    Google Scholar 

  20. Omnès, R., 1992, Consistent interpretation of quantum mechanics, Rev. Mod. Phys. 64, 339–382.

    Google Scholar 

  21. Gisin, N., and Percival, I. C, 1992, The quantum-state diffusion model applied to open systems, J. Phys. A: Math. Gen. 25, 5677–5691.

    Google Scholar 

  22. Diósi, L., Gisin, N., Halliwell, J., and Percival, I. C, 1994, Decoherent histories and quantum state diffusion, Phys. Rev. Lett. 74, 203–207.

    Google Scholar 

  23. Carmichael, H., 1993, An Open Systems Approach to Quantum Optics, Springer, Heidelberg.

    Google Scholar 

  24. Zurek, W. H., and Paz, J. P., 1994, Decoherence, chaos and the second law, Phys. Rev. Lett. 72, 2508–2511; 1995, Physica D83, 300-308.

    Google Scholar 

  25. Habib, S., Shizume, K., and Zurek, W. H., 1998, Decoherence, chaos, and the quantum-classical correspondence, Phys. Rev. Lett., 80, 4361–4365 (1998). quant-ph/9803042.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Dittrich, T., and Graham, R., 1990, Long Time Behavior in the Quantized Standard Map with Dissipation, Ann. Phys. (N. Y.) 200, 363–421. [80]

    Google Scholar 

  27. Barnett, S. M., Burnett, K., and Vacarro, J. A., 1996, Why a condensate can be thought of as having a definite phase, J. of Res. NIST 101, 593–600; Wright, E. M., Walls, D. F., and Garrison, J. C., 1996, Collapses and revivals of Bose-Einstein condensates formed in small atomic samples, Phys. Rev. Lett. 77, 2158-2161.

    Google Scholar 

  28. Zurek, W. H., 1983, Information transfer in quantum measurements: Irre-versibility and amplification, pp. 87–116 in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre and M. O. Scully, eds. (Plenum, New York).

    Google Scholar 

  29. Barnum, H., Caves, C. M., Fuchs, C. A., Jozsa, R., Schumacher, B., 1996, Noncommuting mixed states cannot be broadcast, Phys. Rev. Lett. 76, 2818–2821.

    Google Scholar 

  30. Feynman, R. P., 1986, Quantum mechanical computers, Found. Phys. 16, 507–531.

    Google Scholar 

  31. Deutsch, D., 1985, Quantum theory: The Church-Turing principle and the universal quantum computer, Proc. R. Soc. Lond. A400, 97–117.

    Google Scholar 

  32. Lloyd, S., 1993, A potentially realizable quantum computer, Science 261, 1569–1571.

    Google Scholar 

  33. DiVincenzo, D. P., 1995, Quantum computation, Science 270, 255–261.

    Google Scholar 

  34. Bennett, C. H., 1995, Quantum information and computation, Physics Today 48 (Oct.), 24–30.

    Google Scholar 

  35. Williams, C. P. and Clearwater, S. H., 1997, Explorations in Quantum Computing (Springer, New York).

    Google Scholar 

  36. Schumacher, B., 1995, Quantum coding, Phys. Rev. A51, 2738–2747; Schumacher, B., Westmoreland, M., and Wootters, W. K., 1996, Limitation of the amount of accessible information in a quantum channel, Phys. Rev. Lett 76, 3452-3455; Schumacher, B., 1996, Sending entanglement through noisy quantum channels, Phys. Rev. A54, 2614-2628.

    Google Scholar 

  37. Ekert, A., and Jozsa, R, 1996, Quantum computation and Shor’s factoring algorithm, Rev. Mod. Phys. 68, 733.

    Google Scholar 

  38. DiVincenzo, D., Knill, E., Laflamme, R., and Zurek, W. H., eds., 1998, Quantum coherence and decoherence, Proc. Roy. Soc, 454.

    Google Scholar 

  39. Brune, M., et al., 1996 Phys. Rev. Lett. 77, 4887–4890.

    Google Scholar 

  40. Poyatos, J. F., Cirac, J. I., and Zoller, P., 1996 Phys. Rev. Lett. 77, 4728–4731.

    Google Scholar 

  41. Anglin, J. R., Paz, J. P., and Zurek, W. H., 1997, Phys. Rev. A55, 4041.

    Google Scholar 

  42. Bose, S., Jacobs, K., and Knight, P. L., 1997, quant-ph/9712017.

    Google Scholar 

  43. Cirac, J. I., Lewenstcin, M., Molmer, K., and Zoller, P. 1998, Quantum super position states of Bose-Einstein condensates, Phys. Rev. A57, 548.

    Google Scholar 

  44. Monroe, C, Meekhof, D. M., King, B. E., and Wineland, D. J., 1996, Science 272, 1131–1136.

    Google Scholar 

  45. Bohr, N., 1928, Nature 121, 580–590.

    Google Scholar 

  46. Heisenberg, W., 1927 Z. Phys. 43, 172–198; English translation in Ref. 49.

    Google Scholar 

  47. Born, M., 1926, Z. Phys 37, 863–867; English translation in Ref. 49.

    Google Scholar 

  48. Schrödinger, E., 1935, Die gegenwärtige Situation in der Quantenmechanik, Nautrwiss 23, 807–812, 823-828, 844-849.

    Google Scholar 

  49. Wheeler, J. A., and Zurek, W. H., 1983, Quantum Theory and Measurement, Princeton University Press.

    Google Scholar 

  50. Everett, H., III., 1957, ‘Relative State’ formulation of quantum mechanics, Rev. Mod. Phys. 29, 454–462.

    Google Scholar 

  51. Wheeler, J. A., 1983, pp. 182–213 in Ref. 49.

    Google Scholar 

  52. Carmichael, H. J., Kochan, P., and Tian, L., Coherent states and open quantum systems: A comment on the Stern-Gerlach experiment and Schrodinger’s cat, Proc. Int. Symp. on Coherent States, Past, Present, and Future, Oak Ridge, 1993.

    Google Scholar 

  53. Gnedenko, B. V., 1962, Theory of Probability (Chelsea, New York).

    Google Scholar 

  54. Graham, N., 1970, The Everett Interpretation of Quantum Mechanics, University North Carolina, Chapel Hill.

    Google Scholar 

  55. Hartle, J. B., 1968, Am. J. Phys. 36, 704.

    Google Scholar 

  56. Fahri, E., Goldstone, J., and Gutmann, S., 1989, Ann. Phys. 192, 368.

    Google Scholar 

  57. Kent A., 1990, Against many-worlds interpretation, Int. J. Mod. Phys. 5, 1745–1762.

    Google Scholar 

  58. Zeh, H. D., 1997, What is achieved by decoherence?, in New Developments on Fundamental Problems in Quantum Physics (Oviedo II), Ferrero, M., and van der Merwe, A., eds. (Kluwer, Dordrecht).

    Google Scholar 

  59. Szilard, L., 1925, On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings, Z. f. Physik 32, 753–788; English translation in Behav. Sci. 9, 301-310 (1964).

    Google Scholar 

  60. Cox, R. T., 1946, Am. J. Phys. 14 1–13.

    Google Scholar 

  61. Birkhoff, G., and von Neumann, J., 1936, Ann. Math. 37, 823–843.

    Google Scholar 

  62. Gleason, A. M., 1957, Measures on the closed subspaces of a Hilbert space, Jour. Math. Mech. 6, 885–893.

    Google Scholar 

  63. Zurek, W. H., 1993, Negotiating the tricky border between quantum and classical, Physics Today 46 (April), 13.

    Google Scholar 

  64. Elby, A., 1993, Decoherence and Zurek’s existential interpretation of quantum mechanics, in Symposium on Foundations of Modern Physics, P. Busch, P. Lahti, and P. Mittelstaedt, eds. (World Scientific, Singapore).

    Google Scholar 

  65. Healey, R., 1998, in Quantum Measurement, Decoherence, and Modal Interpretations, Hellman, G., and Healey, R, eds., (Minnesota Studies in the Philosophy of Science, Univ. of Minnesota).

    Google Scholar 

  66. Bub, J., 1997, Interpreting the Quantum World (Cambridge Univ. Press, Cambridge)

    Google Scholar 

  67. d'Espagnat, B., 1995, Veiled Reality, (Addison-Wesley, Reading).

    Google Scholar 

  68. Zurek, W. H., 1998 Decoherence, chaos, quantum-classical correspondence, and the algorithmic arrow of time, in the proceedings of Nobel Symposium 104, Physica Scripta, T76, 186–198 (1998); (quant-ph/9802054).

    Google Scholar 

  69. Li, M., and Vitanyi, P., 1993, An Introduction to Kolmogorov Complexity and Its Applications (Springer, Berlin).

    Google Scholar 

  70. Landauer, 1991, Information is physical, Physics Today 44 (May), 23.

    Google Scholar 

  71. Omnès, R., 1994, The Interpretation of Quantum Mechanics, Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zurek, W.H. (2000). Decoherence and Einselection. In: Blanchard, P., Joos, E., Giulini, D., Kiefer, C., Stamatescu, IO. (eds) Decoherence: Theoretical, Experimental, and Conceptual Problems. Lecture Notes in Physics, vol 538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46657-6_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-46657-6_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66899-2

  • Online ISBN: 978-3-540-46657-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics