Skip to main content

An Application of EEQT: Tunneling Times

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 538))

Abstract

The mean traversal and reflection times of electrons in the presence of a one-dimensional barrier are simulated using the formalism of the Event-Enhanced Quantum Theory. The results are compared with those of other selected approaches. The existence of the “Hartman-effect” and superluminal velocities is examined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ph. Blanchard and A. Jadczyk. Event-Enhanced Formalism of Quantum Theory or Columbus Solution to the Quantum Measurement Problem. In V.P. Belavkin et al., editor, Quantum Communication and Measurement. Plenum Press, New York, 1995.

    Google Scholar 

  2. Ph. Blanchard and A. Jadczyk. Reports on Math. Phys. 36 (1995) 235.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Ph. Blanchard and A. Jadczyk. Phys. Lett. A 203 (1995) 260.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Ph. Blanchard and A. Jadczyk. Ann. Physik 4 (1995) 583.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. A. Jadczyk, G. Kondrat and R. Olkiewicz, J. Phys. A 30 (1997) 1863.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Ph. Blanchard and A. Jadczyk. Helv Phys Ada 69 (1996) 613.

    MATH  MathSciNet  Google Scholar 

  7. Ph. Blanchard and A. Jadczyk. Int. J. Theor. Phys. 31 (1998) 227.

    Article  MathSciNet  Google Scholar 

  8. A. Ruschhaupt. Phys. Lett. A 250 (1998) 249.

    Article  ADS  Google Scholar 

  9. E.H. Hauge and J.A. Støvneng. Rev. Mod. Phys. 61 (1989) 917.

    Article  ADS  Google Scholar 

  10. R. Landauer and Th. Martin. Reviews of Modern Physics 66 (1994) 217.

    Article  ADS  Google Scholar 

  11. G. Nimtz and H. Winfried. Prog. Quant. Electr. 21 (1997) 81.

    Article  ADS  Google Scholar 

  12. J.P. Palao, J.P. Muga, S. Brouars, and A. Jadczyk. Phys. Lett. A 233 (1997) 227.

    Article  ADS  Google Scholar 

  13. H.M. Goldberg, A. Schey and J.L. Schwartz. American Journal of Physics 35 (1967) 177.

    Article  ADS  Google Scholar 

  14. T.E. Hartman. J. Appl. Phys. 33 (1962) 3427.

    Article  ADS  Google Scholar 

  15. M. Büttiker. Phys. Rev. B 27 (1983) 6178.

    Article  ADS  Google Scholar 

  16. C.R. Leavens. Solid State Comm. 74 (1990) 923.

    Article  ADS  Google Scholar 

  17. C.R. Leavens. Solid State Comm. 76 (1990) 253.

    Article  ADS  Google Scholar 

  18. C.R. Leavens. Foundation of Physics 25 (1995) 229.

    Article  ADS  MathSciNet  Google Scholar 

  19. C.R. Leavens. Phys. Lett. A 197 (1995) 88.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. X. Oriols, F. Martín, and J. Suñé. Phys. Rev. A 54 (1996) 2594.

    Article  ADS  Google Scholar 

  21. A. Enders and G. Nimtz. J. Phys. I France 2 (1992) 1693.

    Article  Google Scholar 

  22. A. Enders and G. Nimtz. J. Phys. I France 3 (1993) 1089.

    Article  Google Scholar 

  23. A. Enders and G. Nimtz. Phys. Rev. E 48 (1993) 632.

    Article  ADS  Google Scholar 

  24. A.M. Steinberg, P.G. Kwiat and R.Y. Chiao. Phys. Rev. Lett. 71 (1993) 708.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruschhaupt, A. (2000). An Application of EEQT: Tunneling Times. In: Blanchard, P., Joos, E., Giulini, D., Kiefer, C., Stamatescu, IO. (eds) Decoherence: Theoretical, Experimental, and Conceptual Problems. Lecture Notes in Physics, vol 538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46657-6_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-46657-6_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66899-2

  • Online ISBN: 978-3-540-46657-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics