Skip to main content

Decoherence and Continuous Measurements: Phenomenology and Models

  • Conference paper
  • First Online:
Decoherence: Theoretical, Experimental, and Conceptual Problems

Part of the book series: Lecture Notes in Physics ((LNP,volume 538))

  • 802 Accesses

Abstract

Decoherence of a quantum system induced by the interaction with its environment (measuring medium) may be presented phenomenologically as a continuous (or repeated) fuzzy quantum measurement. The dynamics of the system subject to continuous decoherence (measurement) may be described by the complex-Hamiltonian Schrodinger equation, stochastic Schrödinger equation of a certain type or (nonselectively) by the Lindblad master equation. The formulation of this dynamics with the help of restricted path integrals shows that the dynamics of the measured system depends only on the information recorded in the environment. With the help of the complex-Hamiltonian Schrodinger equation, monitoring a quantum transition is shown to be possible, at the price of decreasing the transition probability (weak Zeno effect). The monitoring of the level transition may be realized by a long series of short weak observations of the system which results in controllable slow decoherence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., and Zeh, H. D. (1996) Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin etc.

    MATH  Google Scholar 

  2. Mensky, M. B. (1997) Decoherence in continuous measurements: from models to phenomenology. Pound. Phys. 27, 1637–1654

    Article  MathSciNet  ADS  Google Scholar 

  3. Mensky, M. B. (1998) Decoherence and the theory of continuous quantum measurements. Physics-Uspekhi 41, 923–940

    Article  ADS  Google Scholar 

  4. Zeh, H. D. (1970) On the interpretation of measurement in quantum theory. Found. Phys. 1, 69–76

    Article  ADS  Google Scholar 

  5. Zeh, H. D. (1973) Toward a quantum theory of observation. Pound. Phys. 3, 109–116

    Article  ADS  Google Scholar 

  6. Braginsky, V. B. and Vorontsov, Yu. I. (1974) Quantum-mechanical restrictions in macroscopic measurements and modern experimental devices. Uspekhi Fiz. Nauk 114, 41–53

    Google Scholar 

  7. Khalili, F. Ya. (1981) Vestnik Mosk. Universiteta, Ser. 3, Phys., Astr., 22, 37

    Google Scholar 

  8. Zurek, W. H. (1982) Environment-induced superselection rules. Phys. Rev. D 26, 1862–1880

    ADS  MathSciNet  Google Scholar 

  9. Caldeira, A. O. and Leggett, A. J. (1983) Path integral approach to quantum Brownian motion. Physica A 121, 587–616

    ADS  MathSciNet  Google Scholar 

  10. Joos, E. (1984) Continuous measurement: Watchdog effect versus golden rule. Phys. Rev. D 29, 1626–1633

    ADS  MathSciNet  Google Scholar 

  11. Joos, E. and Zeh, H. D. (1985) The emergence of classical properties through interaction with the environment. Z. Phys.B 59, 223–243

    Article  ADS  Google Scholar 

  12. Walls, D. F. and Milburn, G. J. (1985) Effect of dissipation on quantum coherence. Phys. Rev. A 31, 2403–2408

    ADS  MathSciNet  Google Scholar 

  13. Peres, A. (1987) Continuous monitoring of quantum systems. In A. Blaquiere, S. Diner, and G. Lochak, editors, Information Complexity and Control in Quantum Physics, pages 235–240, Wien, Springer-Verlag.

    Google Scholar 

  14. Khalili, F. Ya. (1988) Quantum Zeno paradox in measurements with finite precision. Vestnik Mosk. Universiteta, ser. 3, no.5, page 13

    Google Scholar 

  15. Konetchnyi, A., Mensky, M. B., and Namiot, V. (1993) The physical model for monitoring position of a quantum particle. Phys. Lett. A 177, 283–289

    ADS  MathSciNet  Google Scholar 

  16. Audretsch, J. and Mensky, M. B. (1997) Continuous fuzzy measurement of energy for a two-level system. Phys. Rev. A 56, 44–54

    ADS  Google Scholar 

  17. Lindblad, G. (1976) On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Bclavkin, V. P. (1989) A new wave equation for a continuous nondemolition measurement. Phys. Lett. A 140, 355–358

    ADS  Google Scholar 

  19. Diosi, L. (1989) Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165–1174

    ADS  Google Scholar 

  20. Gisin, N. (1989) Stochastic quantum dynamics and relativity. Helv. Phys. Acta 62, 363–371

    MathSciNet  Google Scholar 

  21. Golubtsova, G. A. and Mensky, M. B. (1989) Quantum nondemolition measurements from path integral. Intern. J. of Modern Phys. A 4, 2733–2750

    Article  ADS  Google Scholar 

  22. Mensky, M. B., Onofrio, R., and Presilla, C. (1991) Continuous quantum monitoring of position of nonlinear oscillators. Phys. Lett. A 161, 236–240

    ADS  Google Scholar 

  23. Mensky, M. B., Onofrio, R., and Presilla, C. (1993) Optimal monitoring of position in nonlinear quantum systems. Phys. Rev. Lett. 70, 2825–2828

    Article  ADS  Google Scholar 

  24. Mensky, M. B. (1993) Continuous Quantum Measurements and Path Integrals. IOP Publishing, Bristol and Philadelphia

    Google Scholar 

  25. Presilla, C, Onofrio, R., and Tambini, U. (1996) Measurement quantum mechanics and experiments on quantum Zeno effect. Ann. Phys. (N.Y.) 248, 95–121

    Article  ADS  MathSciNet  Google Scholar 

  26. Albeverio, S., KolokoPtsov, V. N., and Smolyanov, O. G. (1997) Continuous quantum measurement: Local and global approaches. Reviews in Math. Phys. 9, 907–920

    Article  MATH  ADS  Google Scholar 

  27. Feynman, R. P. (1948) Space-time approach to non-relativistic quantum mechanics. Reviews of Modern Physics 20, 367–387

    Article  ADS  MathSciNet  Google Scholar 

  28. Mensky, M. B. (1979) Quantum restrictions for continuous observation of an oscillator. Phys. Rev. D 20, 384–387

    ADS  Google Scholar 

  29. Mensky, M. B. (1979) Quantum restrictions on measurability of parameters of motion for a macroscopic oscillator. Sov. Phys.-JETP 50, 667–674

    ADS  Google Scholar 

  30. Carmichael, H. (1993) An Open Systems Approach to Quantum Optics. Springer, Berlin and Heidelberg

    MATH  Google Scholar 

  31. Mensky, M. B. (1994) Continuous quantum measurements: Restricted path integrals and master equations. Phys. Lett. A 196, 159–167

    ADS  MathSciNet  Google Scholar 

  32. Mensky, M. B. (1997) Finite resolution of time in continuous measurements: Phenomenology and the model. Phys. Lett. A 231, 1–8

    ADS  MathSciNet  Google Scholar 

  33. Onofrio, R., Presilla, C, and Tambini, U. (1993) Quantum Zeno effect with the Feynman-Mensky path-integral approach. Phys. Lett. A 183, 135–140

    ADS  Google Scholar 

  34. Tambini, U., Presilla, C, and Onofrio, R. (1995) Dynamics of quantum collapse in energy measurements. Phys. Rev. A 51, 967

    ADS  Google Scholar 

  35. Audretsch, J., Mensky, M. B., and Namiot, V. A. (1997) How to visualize a quantum transition of a single atom. Physics Letters A 237, 1–9

    ADS  MathSciNet  Google Scholar 

  36. Audretsch, J., and Mensky, M. B. Realization scheme for continuous fuzzy measurement of energy and the monitoring of a quantum transition. To be published, quant-ph/9808062

    Google Scholar 

  37. Mensky, M. B. (1996) Restricted path integrals for open quantum systems. In M. Namiki, I. Ohba, K. Maeda, and Y. Aizawa, editors, Quantum Physics, Chaos Theory, and Cosmology, pages 257–273, Woodbury and New York, American Institute of Physics

    Google Scholar 

  38. Griffiths, R. B. (1984) Consistent histories and the interpretation of quantum mechanics. J. Statist. Phys. 36, 219–272

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Omnes, R. (1990) From Hilbert space to common sense: A synthesis of recent progress in the interpretation of quantum mechanics. Ann. Phys. (N.Y.) 201, 354–447

    Article  ADS  MathSciNet  Google Scholar 

  40. Gell-Mann, M. and Hartle, J. B. (1990) Quantum mechanics in the light of quantum cosmology. In W. H. Zurek, editor, Complexity, Entropy, and the Physics of Information, pages 425–458. Addison-Wesley, Reading

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mensky, M.B. (2000). Decoherence and Continuous Measurements: Phenomenology and Models. In: Blanchard, P., Joos, E., Giulini, D., Kiefer, C., Stamatescu, IO. (eds) Decoherence: Theoretical, Experimental, and Conceptual Problems. Lecture Notes in Physics, vol 538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46657-6_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-46657-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66899-2

  • Online ISBN: 978-3-540-46657-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics