Skip to main content

Non-commutative Extensions of Classical Theories in Physics

  • Conference paper
  • First Online:
Towards Quantum Gravity

Part of the book series: Lecture Notes in Physics ((LNP,volume 541))

  • 547 Accesses

Abstract

We propose a short introductory overview of the non-commutative extensions of several classical physical theories. After a general discussion of the reasons that suggest that the non-commutativity is a major issue that will eventually lead to the unification of gravity with other fundamental interactions, we display examples of non-commutative generalizations of known geometries.

Finally we discuss the general properties of the algebras that could become generalizations of algebras of smooth functions on Minkowskian (Riemannian) manifolds, needed for the description of Quantum Gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. E. Moyal, Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc., 45, 99 (1949)

    Google Scholar 

  2. P.A.M. Dirac, The Fundamental Equations of Quantum Mechanics, Proc. Roy. Soc. A, 109, p.642 (1926); also On Quantum Algebras, Proc. Cambridge Phil. Soc., 23 p.412 (1926)

    Google Scholar 

  3. P.A.M. Dirac, as cited in The Mathematical Intelligencer 11 p.58 (1989)

    Google Scholar 

  4. R. Arnowitt, S. Deser, C. Misner, in Recent Developments in General Relativity, ed.L. Witten, Wiley, London-New York, (1962)

    Google Scholar 

  5. B. DeWitt, Physical Review, 160, p.1113 (1963)

    Article  ADS  Google Scholar 

  6. J. M. Souriau, Structure des Systèmes Dynamiques, Dunod, Paris, (1969)

    Google Scholar 

  7. D. Simms, in Differential Geometrical Methors in Math. Physics, Springer Lecture Notes in Mathematics, 170, ed.K. Bleuler and A. Reetz, Springer-Verlag, (1970).

    Google Scholar 

  8. B. Kostant, Quantization and Unitary Representations, Lecture Notes in Mathematics, 170, Springer Verlag p.237 (1970).

    Google Scholar 

  9. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, (1955)

    Google Scholar 

  10. A. Ashtekar, in Mathematical Physics towards the 21-st century, R. Sen and A. Gersten eds., Ben Gurion University of the Neguev Press, p 230 (1994).

    Google Scholar 

  11. C. Rovelli, Nucl. Physics B 405, p.797 (1993), also the lectures in this volume.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. D. Quillen, Topology 24, p.89 (1985)

    MATH  MathSciNet  Google Scholar 

  13. A. Connes, Non-Commutative Geometry, Acad. Press., New York (1994)

    Google Scholar 

  14. M. Dubois-Violette, C.R. Acad. Sci. Paris, 307, Sér.I, p.403 (1989)

    MathSciNet  Google Scholar 

  15. M. Dubois-Violette, R. Kerner and J. Madore, Journ. of Math. Physics, 31(2), p.316 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. M. Dubois-Violette, R. Kerner and J. Madore, ibid, p.323 (1990)

    Google Scholar 

  17. A. Connes and J. Lott, Nucl. Ph ys. Proc. Suppl. B 18, p.29 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Coquereaux, G. Esposito-Farèse and J. Vaillant, Nucl. Phys B, 353, p.689 (1991)

    Article  ADS  Google Scholar 

  19. A. Chamseddine, G. Felder and J. Fröhlich, Commun. Math. Physics, 155, p.205 (1993)

    Article  MATH  ADS  Google Scholar 

  20. J. Madore, T. Masson and J. Mourad, Class. and Quantum Gravity, 12, p.1429 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. M. Dubois-Violette, J. Madore and R. Kerner, Journal of Math. Physics, 39, No 2, p.730 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. S. Doplicher, K. Friedenhagen and J.E. Roberts, Comm. Math. Phys., 172, p.187 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Ann. Phys. (N.Y.) 111 p.61, p. 111 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. J. Lukierski, A. Nowicki and H. Ruegg, Phys. Lett.B 293, p.419 (1992)

    MathSciNet  Google Scholar 

  25. V. G. Drinfeld, Quantum Groups, in Proceedings of Intern. Congress of Mathematics, Berkeley, p.798

    Google Scholar 

  26. L. D. Faddeev, Proc. of Schladming Winter School, p.89 (1989)

    Google Scholar 

  27. S.L. Woronowicz, Communications in Math. Phys. 111 p.613 (1987) also: P.P odleś and S.L. Woronowicz, ibid, 178, p.61 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. L. Biedenharn, Quantum Groups, Lecture Notes in Physics, 370, H.D. Doebner and J.D. Hennig eds., Springer-Verlag, p.67 (1990)

    Google Scholar 

  29. J. Wess and B. Zumino, Nucl. Phys. B (Proc. Suppl.) 18, p.32 (1990)

    MathSciNet  Google Scholar 

  30. L.A. Takhtajan, Adv. Studies in Pure and Applied Mathematics, 19, p.435 (1989)

    MathSciNet  Google Scholar 

  31. V. G. Kac, Colloque Dixmier, p.471, Progrss in Mathematics, Vol.92 Birkhäuser, Boston (1990); see also: C. de Concini and V.G. Kac, J.Am. Math. Soc. 5 (1), p.151 (1992).

    Google Scholar 

  32. Yu. Manin, Commun. Math. Physics, 123, p.163 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. M. Dubois-Violette, J. Madore, T. Masson and J. Mourad, Lett. in Math. Physics, 35, p.351 (1995).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kerner, R. (2000). Non-commutative Extensions of Classical Theories in Physics. In: Kowalski-Glikman, J. (eds) Towards Quantum Gravity. Lecture Notes in Physics, vol 541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46634-7_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-46634-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66910-4

  • Online ISBN: 978-3-540-46634-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics