Advertisement

Generalized Maximum Independent Sets for Trees in Subquadratic Time

  • B. K. Bhattacharya
  • M. E. Houle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1741)

Abstract

In this paper we consider a special case of the Maximum Weighted Independent Set problem for graphs: given a vertex- and edge- weighted tree T = (V,E) where |V| = n, and a real number b, determine the largest weighted subset P of V such that the distance between the two closest elements of P is at least b. We present an O(n log3 n) algorithm for this problem when the vertices have unequal weights. The space requirement is O(n log n). This is the first known subquadratic algorithm for the problem. This solution leads to an O(n log4 n) algorithm to the previously-studied Weighted Max-Min Dispersion Problem.

Keywords

Leaf Node Binary Tree Optimal Placement Vertex Weight Segment Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. K. Bhattacharya and M. E. Houle. Generalized maximum independent sets for trees. Proceedings of Computing: the Australasian Theory Symposium (CATS97), Sydney, Feb. 1997.Google Scholar
  2. 2.
    P. Eades, T. Lin and X. Lin. Minimum size h-v drawings. Advanced Visual Interfaces (Proc. AVI’ 92), World Scientific Series in Computer Science, 36:386–394, 1992.Google Scholar
  3. 3.
    E. Erkut. The discrete p-dispersion problem. Research Paper No. 87-5, Dept. of Finance and Management Science, University of Calgary, Apr. 1989.Google Scholar
  4. 4.
    E. Erkut and S. Neuman. Analytical models for locating undesirable facilities. European Journal of Operations Research, 40:275–291, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    E. Erkut, T. Baptie and B. von Hohenbalken. The discrete p-maxian location problem. Computers in OR, 17(1):51–61, 1990.zbMATHCrossRefGoogle Scholar
  6. 6.
    U. Friege, G. Kortsarz, D. Peleg. The dense k-subgraph problem. Manuscript, June 1998.Google Scholar
  7. 7.
    G. N. Frederickson and D. B. Johnson. Finding kth paths and p-centers by generating and searching good data structures. Journal of Algorithms, 4:61–80, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    R. Hassin, S. Rubinstein and A. Tamir. Approximation algorithms for maximum facility dispersion. Operations Research Letters, 21:133–137, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. M. Halldórsson, K. Iwano, N. Katoh and T. Tokuyama. Finding subsets maximizing minimum structures. In Proc. 6th ACM-SIAM Symposium on Discrete Algorithms (SODA), San Francisco, pp. 150–157, 1995.Google Scholar
  10. 10.
    G. Kortsarz and D. Peleg. On choosing a dense subgraph. In Proc. 34th IEEE FOCS, Palo Alto, USA, pp. 692–701, 1993.Google Scholar
  11. 11.
    M. J. Kuby. Programming models for facility dispersion: the p-dispersion and maximum dispersion problems. Geographical Analysis, 19(4):315–329, 1987.CrossRefGoogle Scholar
  12. 12.
    F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, 1985.Google Scholar
  13. 13.
    S. S. Ravi, D. J. Rosenkrantz and G. K. Tayi. Heuristic and special case algorithms for dispersion problems. Operations Research, 42(2):299–310, 1994.zbMATHCrossRefGoogle Scholar
  14. 14.
    D. J. Rosenkrantz, G. K. Tayi and S. S. Ravi. Capacitated facility dispersion problems. Manuscript, 1997.Google Scholar
  15. 15.
    L. Stockmeyer. Optimal orientation of cells in slicing floorplan design. Information and Control, 57:91–101, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    A. Tamir. Obnoxious facility location on graphs. SIAM J. Disc. Math., 4:550–567, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    A. Tamir. Comments on the paper `Heuristic and special case algorithms for dispersion problems’ by S. S. Ravi. D. J. Rosenkrantz and G. K. Tayi. Operations Research, 46:157–158, 1998.Google Scholar
  18. 18.
    D. J. White. The maximal dispersion problem and the `first point outside the neighbourhood’ heuristic. Computers and Operations Research, 18:43–50, 1991.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • B. K. Bhattacharya
    • 1
  • M. E. Houle
    • 2
  1. 1.School of Computing ScienceSimon Fraser UniversityBurnabyCanada
  2. 2.Basser Department of Computer ScienceThe University of SydneySydneyAustralia

Personalised recommendations