Advertisement

Approximating Multicast Congestion

  • Santosh Vempala
  • Berthold Vöcking
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1741)

Abstract

We present a randomized algorithm for approximating multicast congestion (a generalization of path congestion) to within O(log n) times the best possible. Our main tools are a linear programming relaxation and iterated randomized rounding.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bern, and P. Plassmann, The Steiner problem with edge lengths 1 and 2. Information Processing Letters 32:171–176, 1989.zbMATHMathSciNetGoogle Scholar
  2. 2.
    M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, 1987.Google Scholar
  3. 3.
    S. Hougardy and H. J. Promel, A 1.598 approximation algorithm for the steiner problem in graphs. Proc. 10th Ann. ACM-SIAM Symp. on Discrete Algorithms, ACM-SIAM, 448–453, 1999.Google Scholar
  4. 4.
    T. Hagerup and C. Rüb, A guided tour of Chernoff bounds. Information Processing Letters 33(6):305–308, 1990.zbMATHGoogle Scholar
  5. 5.
    R. M. Karp, Reducibility among combinatorial problems. Complexity of Computer Computations, R. E. Miller, J. W. Thatcher, Eds., Plenum Press, New York, 85–103, 1972.Google Scholar
  6. 6.
    P. Raghavan and C.D. Thompson Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Santosh Vempala
    • 1
  • Berthold Vöcking
    • 2
  1. 1.Dept. of MathematicsMITBerkeley
  2. 2.International Computer Science InstituteBerkeley

Personalised recommendations