LexBFS-Ordering in Asteroidal Triple-Free Graphs

  • Jou-Ming Chang
  • Chin-Wen Ho
  • Ming-Tat Ko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1741)


In this paper, we study the metric property of LexBFS- ordering on AT-free graphs. Based on a 2-sweep LexBFS algorithm, we show that every AT-free graph admits a vertex ordering, called the strong 2-cocomparability ordering, that for any three vertices uvw in the ordering, if d(u,w) ≤ 2 then d(u, v) = 1 or d(v,w) ≤ 2. As an application of this ordering, we provide a simple linear time recognition algorithm for bipartite permutation graphs, which form a subclass of AT-free graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Brandstädt, V. B. Le and J. P. Spinrad, Graph Classes: A Survey, (series SIAM Monographs on Discrete Mathematics and Applications, 1999).Google Scholar
  2. 2.
    K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs and graph planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976) 335–379.Google Scholar
  3. 3.
    H. Broersma, T. Kloks, D. Kratsch and H. Muller, Independent sets in asteroidal triple-free graphs, SIAM J. Discrete Math., 12 (1999) 276–287.Google Scholar
  4. 4.
    J. M. Chang, C. W. Ho and M. T. Ko, Distances in asteroidal triple-free graphs and their powers, in: Proceedings of CTS Workshop on Combinatorics and Algorithms, Taipei, Taiwan, (1998) 1–14.Google Scholar
  5. 5.
    D. G. Corneil, F. F. Dragan, M. Habib and C. Paul, Diameter determination on restricted graph families, in: Proceedings of WG’98, LNCS Vol. 1517, Springer-Verlag, (1998) 192–202.Google Scholar
  6. 6.
    D. G. Corneil, S. Olariu and L. Stewart, A linear time algorithm to compute a dominating path in an AT-free graph, Inform. Process. Lett., 54 (1995) 253–257.Google Scholar
  7. 7.
    D. G. Corneil, S. Olariu and L. Stewart, Asteroidal triple-free graphs, SIAM J. Discrete Math., 10 (1997), 399–430.Google Scholar
  8. 8.
    D. G. Corneil, S. Olariu and L. Stewart, Linear time algorithms for dominating pairs in asteroidal triple-free graphs, in: Proceedings of ICALP’95, LNCS Vol. 944, Springer-Verlag, (1995) 292–302.Google Scholar
  9. 9.
    T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hung., 18 (1967) 25–66Google Scholar
  10. 10.
    M. C. Golumbic, C. L. Monma and W. T. Trotter, Jr. Tolerance graphs, Discrete Appl. Math., 9 (1984), 157–170.Google Scholar
  11. 11.
    C. T. Hoàng and B. A. Reed, P4-comparability graphs, Discrete Math., 74 (1989) 173–200.Google Scholar
  12. 12.
    B. Jamison and S. Olariu, On the semi-perfect elimination, Adv. Appl. Math., 9 (1988) 364–376.Google Scholar
  13. 13.
    T. Kloks, D. Kratsch and J. Spinrad, On treewidth and minimum fill-in of asteroidal triple-free graphs, Theor. Comput. Sci., 175 (1997) 309–335.Google Scholar
  14. 14.
    T. Kloks. H. Müller and C. K. Wong, Vertex ranking of asteroidal triple-free graphs, Inform. Process. Lett., 68 (1998) 201–206.Google Scholar
  15. 15.
    D. Kratsch, Domination and total domination on asteroidal triple-free graphs, Forschungsergebnisse Math/Inf/96/25, FSU Jena, Germany, 1996.Google Scholar
  16. 16.
    D. Kratsch, H. O. Le, H. Müller and E. Prisner, Additive tree spanners, manuscript, 1998.Google Scholar
  17. 17.
    C. G. Lekkerkerker and J. C. Boland, Representation of a finite graph by a set of intervals on the real line, Fund. Math., 51 (1962) 45–64.Google Scholar
  18. 18.
    A. Pnueli, A. Lempel and S. Even, Transitive orientation of graphs and identification of permutation graphs, Canad. J. Math., 23 (1971) 160–175.Google Scholar
  19. 19.
    D, J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl., 32 (1970) 597–609.Google Scholar
  20. 20.
    D. J. Rose, R. E. Tarjan and G. S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., 5 (1976) 266–283.Google Scholar
  21. 21.
    J. Spinrad, Transitive orientation in O(n2) time, in: Proceedings of 15th Ann. ACM Symp. on Theory of Computing, (1983) 457–466.Google Scholar
  22. 22.
    J. Spinrad, A. Brandstädt and L. Stewart, Bipartite permutation graphs, Discrete Appl. Math., 18 (1987) 279–292.Google Scholar
  23. 23.
    R. E. Tarjan and M. Yanakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984) 566–579.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Jou-Ming Chang
    • 1
    • 3
  • Chin-Wen Ho
    • 1
  • Ming-Tat Ko
    • 2
  1. 1.Institute of Computer Science and Information EngineeringNational Central UniversityChung-LiTaiwan, ROC
  2. 2.Institute of Information ScienceAcademia SinicaTaipeiTaiwan, ROC
  3. 3.Department of Information ManagementNational Taipei College of BusinessTaipeiTaiwan, ROC

Personalised recommendations