Skip to main content

Perturbation Theories for Nonlinear Waves

  • Conference paper
  • First Online:
Nonlinear Science at the Dawn of the 21st Century

Part of the book series: Lecture Notes in Physics ((LNP,volume 542))

Abstract

Some ideas and theories developed since 1960s to describe nonlinear waves with slowly varying parameters (modulated waves)are outlined. These theories are associated with different versions of the asymptotic perturbation method. In this framework, both quasi-periodic and solitary waves (solitons)can be treated. A scheme for reduction of a quasihyperbolic system to one or more evolution equations is also presented. Some challenges for the theory are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. N. Bogolubov and Y. A. Mitropolsky. Asymptotic Methods in Oscillation Theory. N. Y., Gordon & Breach, 1961.

    Google Scholar 

  2. A. A. Andronov, A. A. Vitt, and S. E. Khaikin. Oscillation Theory. Moscow, Fizmatgiz, 1959 (in Russian).

    Google Scholar 

  3. S. M. Ryutov. Modulated oscillations and waves. Proc. Lebedev Inst., 2, USSR Acad. Sci., 1940 (in Russian).

    Google Scholar 

  4. L. A. Ostrovsky. Electromagnetic waves in nonlinear media with dispersion. Sov. Phys. Techn. Phys., 8, 679–683, 1964 (in Russian, 1963).

    Google Scholar 

  5. G. B. Whitham. Nonlinear dispersive waves. Proc. Roy. Soc. Lond., A283, 238, 1965.

    Google Scholar 

  6. G. B. Whitham. Linear and Nonlinear Waves. John Wiley & Sons, 1974.

    Google Scholar 

  7. L. A. Ostrovsky and E. N. Pelinovsky. Transformation of surface waves in a variable-depth liquid. Izvestija,Oceanic and Atmospheric Physics, 6, 934, 1970.

    Google Scholar 

  8. A. V. Gurevich and L. P. Pitaevsky. Decay of initial discontinuity in the Korteweg-de Vries equation. JETP Lett., 17, 193–195, 1973.

    ADS  Google Scholar 

  9. M. J. Lighthill. Contributions to the theory of waves in nonlinear dispersive systems. J. Inst. Math. Appl., 1, 269–306, 1965.

    Article  MathSciNet  Google Scholar 

  10. N. Bloembergen. Nonlinear Optics (a Lecture Note). NY-Amsterdam, W. A. Benjamin Inc., 1965.

    Google Scholar 

  11. S. A. Akhmanov and R. V. Khokhlov. Problems of Nonlinear Optics: Electromagnetic Waves in Nonlinear Dispersive Media. N. Y., Gordon & Breach Sci. Publ., 1972.

    Google Scholar 

  12. L. A. Ostrovsky. Propagation of wave packets and space-time self-focusing in a nonlinear medium. Sov. Phys. JETP, 24, 797–800, 1967.

    ADS  Google Scholar 

  13. D. T. Benney and A. C. Newell. The propagation of nonlinear wave envelopes. J. Math. Phys. (Stud. Appl. Math.), 46, 133–139, 1967.

    MATH  MathSciNet  Google Scholar 

  14. L. A. Ostrovsky. Envelope shock waves. Sov. Phys. JETP, 27, 660–664, 1968.

    ADS  Google Scholar 

  15. V. I. Karpman. Self-modulation of nonlinear plane waves in dispersive media. JETP Lett., 6, 277–279, 1967.

    ADS  Google Scholar 

  16. V. I. Karpman and E. M. Krushkal. Modulated waves in nonlinear dispersive media. Sov. Phys. JETP, 28, 277–281, 1968.

    ADS  Google Scholar 

  17. A. G. Litvak and V. I. Talanov. A parabolic equation for calculating the fields in dispersive nonlinear media. Radiophys. Quant. Electron., 10, 296–302, 1967.

    Article  ADS  Google Scholar 

  18. V. E. Zakharov. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys., 2, 86–96, 1968.

    Google Scholar 

  19. T. B. Benjamin. Instability of periodic wavetrains in nonlinear dispersive systems. Proc. Roy. Soc. Lond., Ser. A, 299, 59–75, 1967.

    Google Scholar 

  20. T. B. Benjamin and J. F. Feir. The disintegration of wavetrains on deep water. Part 1: Theory. J. Fluid Mech. 27, 417–430, 1967.

    Article  MATH  ADS  Google Scholar 

  21. L. A. Ostrovsky and E. N. Pelinovsky. Averaging method for nonsinusoidal waves. Doklady, 195, 804, 1970.

    Google Scholar 

  22. L. A. Ostrovsky and E. N. Pelinovsky. Averaging method and generalized variational principle for nonsinusoidal waves. Prikladnaya Matematika i Mekhanika, 36, 71, 1972.

    Google Scholar 

  23. K. A. Gorshkov, L. A. Ostrovsky, and E. N. Pelinovsky. Some problems of asymptotic theory for nonlinear waves. Proc. IEEE, 62, 1511, 1974.

    Google Scholar 

  24. K. A. Gorshkov and L. A. Ostrovsky. Interaction of solitons in nonintegrable systems: direct perturbation method and applications. Physica D, 3, 428, 1981.

    Article  ADS  MATH  Google Scholar 

  25. J. P. Keener and D. W. McLaughlin. Green’s function for a linear equation associated with solitons. J. Math. Phys., 18, 2008, 1977.

    Article  MATH  ADS  Google Scholar 

  26. J. P. Keener and D. W. McLaughlin. Soliton under perturbation. Phys. Rev. A16, 777, 1977.

    ADS  MathSciNet  Google Scholar 

  27. V. E. Zakharov. Soliton Theory: Inverse Scattering Method (ed. S. P. Novikov). Moscow, Nauka, 1980.

    Google Scholar 

  28. V. I. Karpman and E. M. Maslov. Perturbation theory for solitons. JETP, 73, 537, 1977.

    MathSciNet  Google Scholar 

  29. D. J. Kaup and A. C. Newell. Soliton as particle, oscillator in slowly changing media: A singular perturbation theory. Proc. Roy. Soc., A301, 413, 1978.

    Google Scholar 

  30. V. I. Karpman. Soliton evolution in presence of perturbations. Physica Scripta, 20, 462, 1979.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. E. M. Maslov. To the perturbation theory in the second approximation. Teor. i Mat. Fiz., 42, 362, 1980 [in Russian].

    ADS  Google Scholar 

  32. R. Grimshaw. Slowly varying solitary waves. 1. Korteveg-de Vries equation. Proc. Roy. Soc., A368, 359, 1979.

    Google Scholar 

  33. R. Grimshaw and H. Mitsudera. Slowly-varying solitary wave solution of the perturbed Korteweg-de Vries equation revisited. Stud. Appl. Math., 90, 75, 1993.

    MATH  MathSciNet  Google Scholar 

  34. A. Bondeson, M. Kisak, and D. Anderson. Soliton perturbation. A variational principle for soliton parameters. Physica Scripta, 20, 479, 1979.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. J. C. Fernandez, C. Froeschle, and G. Reinisch. Adiabatic perturbation of solitons and shock waves. Physica Scripta, 20, 54, 1979.

    Article  MathSciNet  Google Scholar 

  36. Ko K. and H. H. Kuehl. Korteweg-de Vries soliton in slowly varying medium. Phys. Rev. Lett. 1978, 40, 233.

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Ablowitz and H. Segur. Solitons and the inverse scattering transform. SIAM, Philadelphia, 1981.

    Google Scholar 

  38. T. Kawahara. Oscillatory solitary wave in dispersive media. J. Phys. Soc. Japan, 33, 60, 1972.

    Google Scholar 

  39. K. A. Gorshkov and L. A. Ostrovsky. Interaction of solitons with their radiation fields. III Int. Symp. on Select. Topics in Stat. Mech., Part 1, Dubna, 222, 1984.

    Google Scholar 

  40. J. D. Cole. Perturbation Methods in Applied Mathematics. Blaisdell, Waltham, MA, 1968.

    Google Scholar 

  41. A. H. Nayfeh. Perturbation Methods. N. Y., Wiley-Interscience, 1973.

    MATH  Google Scholar 

  42. K. A. Gorshkov, L. A. Ostrovsky, V. V. Papko, and A. S. Pickovsky. On the existence of stationary multisolitons. Phys. Lett. A, 74, 177–179.

    Google Scholar 

  43. K. A. Gorshkov, L. A. Ostrovsky, and V. V. Papko. Interactions and bound states of solitons as classical particles. Sov. Phys. JETP, 44, 306–311, 1976.

    ADS  Google Scholar 

  44. K. A. Gorshkov and V. V. Papko. Dynamic and stochastic oscillations of soliton lattices. Sov. Phys. JETP, 46, 92–97, 1977.

    ADS  Google Scholar 

  45. M. Van Dyke. Perturbation methods in fluid dynamics. N. Y., Acad. Press, 1964.

    Google Scholar 

  46. Y. Kodama and M. J. Ablowitz. Perturbations of solitons and solitary waves. Stud. Appl. Math., 64, 225–245, 1981.

    MATH  ADS  MathSciNet  Google Scholar 

  47. M. J. Ablowitz and Y. Kodama. Note on asymptotic solutions of the Korteweg-de Vries equation. Stud. Appl. Math., 66, 159–170, 1982.

    MATH  ADS  MathSciNet  Google Scholar 

  48. T. Taniuti and C. C. Wei. Reductive perturbation method in nonlinear wave propagation. J. Phys. Soc. Japan, 24, 941, 1968.

    Article  ADS  Google Scholar 

  49. N. Asano and T. Taniuti. Reductive perturbation method for nonlinear wave propagation i inhomogeneous media. J. Phys. Soc. Japan, 27, 1059, 1969.

    Article  ADS  MathSciNet  Google Scholar 

  50. L. A. Ostrovsky and E. N. Pelinovsky. On approximate equations for waves in media with small nonlinearity and dispersion. Prikl. Math. Mech., 38, 121, 1974.

    Google Scholar 

  51. B. A. Malomed and Yu. S. Kivshar. Dynamics of solitons in nearly integrable systems. Rev. Math. Phys., 61, 763, 1989.

    ADS  Google Scholar 

  52. R. V. Khokhlov. To the theory of shock radiowaves in nonlinear lines. Radiotechn. i Elektron., 6, 917–925, 1961 (in Russian).

    Google Scholar 

  53. K. A. Gorshkov, I. A. Soustova, and L. A. Ostrovsky. Perturbation theory in vortex dynamics. J. Fluid Mech. (in print).

    Google Scholar 

  54. R. H. J. Grimshaw, J-M. He, and L. A. Ostrovsky. Terminal damping of a solitary wave due to radiation in rotational systems. Stud. Appl. Math., 101, 197–210, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  55. R. Grimshaw, E. Pelinovsky, and X. Tian. Interaction of a solitary wave with an external force. Physica D, 77, 405–433, 1994.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. K. A. Naugolnykh and L. A. Ostrovsky. Nonlinear Wave Processes in Acoustics. N. Y.-Cambridge-Melbourne, Cambridge Univ. Press, 1998.

    MATH  Google Scholar 

  57. L. A. Ostrovsky and A. I. Potapov. Modulated Waves: Theory and Applications. Baltimore-London, Johns Hopkins Univ. Press, 1999.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ostrovsky, L., Gorshkov, K. (2000). Perturbation Theories for Nonlinear Waves. In: Christiansen, P.L., Sørensen, M.P., Scott, A.C. (eds) Nonlinear Science at the Dawn of the 21st Century. Lecture Notes in Physics, vol 542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46629-0_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-46629-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66918-0

  • Online ISBN: 978-3-540-46629-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics