Skip to main content

The Angular Distribution of Light Emitted by Sonoluminescent Bubbles

  • Conference paper
  • First Online:
Light Scattering from Microstructures

Part of the book series: Lecture Notes in Physics ((LNP,volume 534))

  • 937 Accesses

Abstract

Sonoluminescent bubbles constitute a new kind of microparticles, which cavitate (expand and collapse) due to sound action, with remarkable properties of light radiation. The observation of sonoluminescence in bubbles has opened an active research on a phenomenon of light radiation by sound conversion. Experiments have been performed on emission spectra, estimation of the bubble size by light scattering, assessment of the shape and its possible departure from dipole radiation angular correlations, and concerning the reactive nature of the gas inside the bubble. Several theories have been put forward, like e.g.: those that support the sphericity of the bubble; those that establish that it is actually non spherical, the emission being due to a jet implosion in which one half of the bubble collapses into the other half ; models to explain the dipole strength of a surrounding stream as experimentally observed ; and suggestions that the emission should rather originate in the liquid enclosing the bubble. However, the key problem of determining the size and shape of the bubble at the interval (50 ps) of emission has only recently been solved. Angular correlations from intensity measurements of the detected so- noluminescent flashes, diffracted by the bubble surface at the emission instant have been reported. We review here the theory on the angular distribution of the light emitted from several bubble shapes and sizes. This allows to establish which one matches with the experiments. For instance, it is found that an ellipsoidal shape of 1:5 to 2 μm and eccentricity 0:2 exhibits an excellent agreement with the existing data at all ranges of wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gaitan, D.F., Crum, L.A. (1990): Observation of sonoluminescence from a single, stable cavitation bubble in a water/glycerine mixture. Frontiers of Nonlinear Acoustics. 12th ISNA. Elsevier Applied Science, London, 459–463

    Google Scholar 

  2. Barber, B.P., Putterman, S.J. (1991): Observations of synchronous picosecond sonoluminescent. Nature 352, 318–320.

    Article  ADS  Google Scholar 

  3. Gaitan, D.F., Felipe, D., Crum, L.A., Church, C.C. and Roy, R. A. (1992): Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J. Acoust. Soc. Am. 91, 3166–3183

    Article  ADS  Google Scholar 

  4. Barber B.P., Hiller R.A., Lofstedt R., Putterman S. J., Weninger K. R. (1997): Defining the unknows of sonoluminescence. Phys. Rep. 281, 65–143

    Article  ADS  CAS  Google Scholar 

  5. Hiller, R., Weninger, K., Putterman, S.J. and Barber, B. P. (1994): Effect of noble gas doping in single-bubble sonoluminiscence. Science 266, 248–250

    Article  PubMed  ADS  CAS  Google Scholar 

  6. Matula, T.J., Crum, L A. (1998): Evidence for gas exchange in single-bubble sonoluminescence. Phys. Rev. Lett. 80, 865–868

    Article  CAS  ADS  Google Scholar 

  7. Barber, B.P. and Putterman, S.J. (1992): Light scattering measurements of the repetitive supersonic implosion of a sonoluminescing bubble. Phys. Rev. Lett. 69, 3839–3842

    Article  PubMed  ADS  CAS  Google Scholar 

  8. Gomp, B., Gunther, R., Nick, G., Pecha, R., and Eisenmengar, W. (1997): Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys. Rev. Lett. 79, 1405–1408

    Article  ADS  Google Scholar 

  9. Hiller, R.A., Putterman, S.J., and Weninger, K.R. (1998): Time-resolved spectra of sonoluminescence. Phys. Rev. Lett. 80, 1090–1093

    Article  CAS  ADS  Google Scholar 

  10. Weninger, K., Putterman, S.J. and Barber, B.P. (1996): Angular correlations in sonoluminescence: Diagnostic for the sphericity of a collapsing bubble. Phys. Rev. E 54, 2205–2208

    ADS  Google Scholar 

  11. Hiller, R., Putterman, S.J. and Barber, B.P. (1992): Spectrum of synchronous picosecond sonoluminescence. Phys. Rev. Lett. 69, 1182–1184

    Article  PubMed  ADS  CAS  Google Scholar 

  12. Prosperetti, A. (1996): A new mechanism fro sonoluminescence. J. Acoust. Soc. Am. 101, 2003–2007

    Article  ADS  Google Scholar 

  13. Longuet-Higgins, M.S. (1997): Particle drift near an oscillating bubble. Proc. R. Soc. Lond. A 453, 1551–1568

    MathSciNet  Google Scholar 

  14. Lepoint, T., DePauw, D., Lepoint-Mullie, F., Goldman, M., and Goldman, A. (1997): Sonoluminescence: an alternative ‘electrodynamic’ hypotesis. J. Acoust. Soc. Am. 101, 2012–2030.

    Article  ADS  Google Scholar 

  15. García, N., and Levanyuk, A. (1996): Sonoluminescence: a new electrical breakdown in water. JETP Lett. 64, 909–913

    Article  ADS  Google Scholar 

  16. Schwinger J. (1993): Casimir light: the source. Proc. Natl. Acad. Sci. U.S.A. 90, 2105–2106

    CAS  MathSciNet  Google Scholar 

  17. Eberlein, C., (1996): Sonoluminescence as quantum vacuum radiation. Phys. Rev. Lett. 76, 3842–3845

    Article  PubMed  ADS  CAS  Google Scholar 

  18. García N., and Levanyuk A. (1997): Comment on’ sonoluminescence as quantum vacuum radiation’. Phys. Rev. Lett. 78, 2267

    Article  ADS  Google Scholar 

  19. Nieto-Vesperinas, M., (1991): Scattering and Diraction in Physical Optics, (Wiley, New York) Chap. 7.

    Google Scholar 

  20. Morse, M.P., and Feshbach, H., (1953): Methods of Theoretical Physics, (McGraw Hill, New York)

    MATH  Google Scholar 

  21. Nieto-Vesperinas, M., and Soto-Crespo, J.M., (1987): Monte Carlo simulations for the scattering of electromagnetic waves from perfectly conductive random rough surfaces. Opt. Lett. 12, 979–981; Sanchez-Gil, J.A., and Nieto-Vesperinas, M. (1991): Light scattering from random rough dielectric surfaces. J. Opt. Soc. Am. A 8, 1270-1286

    Article  ADS  CAS  Google Scholar 

  22. Pattanayak, D.N., and Wolf, E. (1972): General form and a new interpretation of the Ewald-Oseen extinction theorem. Opt. Comm. 6, 217–220

    Article  ADS  Google Scholar 

  23. Mandel, L., and Wolf, E., (1995): Optical Coherence and Quantum Optics, (Cambridge University Press, New York) Ch. 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Madrazo, A., Nieto-Vesperinas, M., García, N. (2000). The Angular Distribution of Light Emitted by Sonoluminescent Bubbles. In: Moreno, F., González, F. (eds) Light Scattering from Microstructures. Lecture Notes in Physics, vol 534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46614-2_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-46614-2_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66937-1

  • Online ISBN: 978-3-540-46614-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics