Advertisement

Synergistic Effect of Serendipity and Rational Design in Supramolecular Chemistry

  • Rolf W. Saalfrank
  • Eveline Uller
  • Bernhard Demleitner
  • Ingo Bernt
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 96)

Abstract

Many of the higher nuclearity Werner-type clusters are fortuitous discoveries. This clearly suggests that the principles which control cluster formation are still poorly understood from the point of view of rational design. However, the predictable nature of coordination chemistry has been used successfully for the specific generation of the metalla-topomers of the well-known organic-based coronates and cryptates. Furthermore, it has been shown that the metal coordination geometry and the orientation of the interacting sites in a given ligand provide the instruction, or blueprint, for the rational design of high symmetry coordination clusters. Based on these principles, and the interplay with serendipity, directed syntheses for polynuclear metalla-coronates, sandwich complexes, manifold metalla-cryptates, and metalla-cylinders have been developed. Only recently, the combination of detailed symmetry considerations with the basic protocols of coordination chemistry have made the design of rational strategies for the construction of a variety of nanoscale systems with procured shape and size feasible. Highlights among these species are cube-like clusters and multicompartmental cylindrical nanostructures.

Keywords

Supramolecular chemistry Self-assembly Cage compounds Metal complexes Host-guest chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For recent reviews, see (a) MacGillivray LR, Atwood JL (1999) Angew Chem 111: 1080; (1999) Angew Chem Int Ed Engl 38: 1018CrossRefGoogle Scholar
  2. 1. (b)
    Caulder DL, Raymond KN (1999) J Chem Soc Dalton Trans 1185Google Scholar
  3. 1. (c)
    Saalfrank RW, Demleitner B (1999) Ligand and metal control of self-assembly in supramolecular chemistry. In: Transition metals in supramolecular chemistry. Wiley, Weinheim, vol 5, p 1CrossRefGoogle Scholar
  4. 1. (d)
    Saalfrank RW, Bernt I (1998) Curr Opin Solid State Mater Sci 3: 407CrossRefGoogle Scholar
  5. 1. (e)
    Jones CJ (1998) Chem Soc Rev 27: 289CrossRefGoogle Scholar
  6. 1. (f)
    Lehn J-M (1990) Angew Chem 102: 1347; (1990) Angew Chem Int Ed Engl 29: 1304CrossRefGoogle Scholar
  7. 1. (g)
    Lehn J-M (1995) Supramolecular chemistry. VCH, Weinheim, p 17Google Scholar
  8. 1. (h)
    Philp D, Stoddart JF (1996) Angew Chem 108: 1243; (1996) Angew Chem Int Ed Engl 35: 1154CrossRefGoogle Scholar
  9. 1. (i)
    Hayes W, Stoddart JF (1996) Cyclic molecules formed by self-assembly. In: Semlyen JA (ed) Large ring molecules. Wiley, New York, p 433Google Scholar
  10. 1. (j)
    Stang PJ, Olenyuk B (1997) Acc Chem Res 30: 502CrossRefGoogle Scholar
  11. 1. (k)
    Dietrich B, Viout P, Lehn J-M (1993) Macrocyclic chemistry. VCH, Weinheim, p 171Google Scholar
  12. 1. (l)
    Vögtle F (1992) Supramolekulare Chemie. Teubner, Stuttgart, p 45Google Scholar
  13. 1. (m)
    Fujita M, Oguro D, Miyazawa M, Oka H, Yamaguchi K, Ogura K (1995) Nature 378: 469CrossRefGoogle Scholar
  14. 1. (n)
    Stang PJ (1998) Chem Eur J 4: 19CrossRefGoogle Scholar
  15. 1. (o)
    Hartshorn CM, Steel PJ (1997) Chem Commun 541Google Scholar
  16. 1. (p)
    Fredericks JR, Hamilton AD (1996) Metal template control of self-assembly in supremolecular chemistry In: Hamilton AD (ed) Supramolecular control of structure and reactivity. Wiley, New York, p 1Google Scholar
  17. 1. (q)
    Fyfe MCT, Stoddart JF (1997) Acc Chem Res 30: 393CrossRefGoogle Scholar
  18. 1. (r)
    Baxter PNW (1996) Metal ion directed assembly of complex molecular architectures and nanostructures. In: Atwood JL, Davies JED, Macnicol DD, Vögtle F, Lehn J-M, Sauvage J-P, Hosseini MW (eds) Comprehensive supramolecular chemistry, vol 9. Pergamon, Oxford, p 165Google Scholar
  19. 1. (s)
    Constable EC (1996) Polynuclear transition metal helicates. In: Atwood JL, Davies JED, Macnicol DD, Vögtle F, Lehn J-M, Sauvage J-P, Hosseini MW (eds) Comprehensive supramolecular chemistry, vol 9. Pergamon, Oxford, p 213Google Scholar
  20. 1. (t)
    Constable EC (1992) Tetrahedron 48: 10013CrossRefGoogle Scholar
  21. 1. (u)
    Piguet C, Bernardinelli G, Hopfgartner G (1997) Chem Rev 97: 2005CrossRefGoogle Scholar
  22. 1. (v)
    Fujita M (1996) Self-assembled macrocycles, cages, and catenanes containing transition metals in their backbones. In: Atwood JL, Davies JED, Macnicol DD, Vögtle F, Lehn J-M, Sauvage J-P, Hosseini MW (eds) Comprehensive supramolecular chemistry, vol 9. Pergamon, Oxford p 253Google Scholar
  23. 1. (w)
    Vögtle F, Hoss R, Händel M (1996) In: Cornils B, Hermann W (eds) Applied homogeneous catalysis with organometallic compounds, vol 2. VCH, Weinheim, p 801Google Scholar
  24. 1. (x)
    Chambron J-C, Dietrich-Buchecker C, Sauvage J-P (1996) Transition metals as assembling and templating species: synthesis of catenanes and molecular knots. In: Atwood JL, Davies JED, Macnicol DD, Vögtle F, Lehn J-M, Sauvage J-P, Hosseini MW (eds) Comprehensive supramolecular chemistry, vol 9. Pergamon, Oxford, p 43Google Scholar
  25. 1. (y)
    Pecoraro VL, Stemmler AJ, Gibney BR, Bodwin JJ, Wang H, Kampf JW, Barwinski A (1997) Prog Inorg Chem 45: 83CrossRefGoogle Scholar
  26. 1. (z)
    Fujita M (1998) Chem Soc Rev 27: 417; (α) Linton B, Hamilton AD (1997) Chem Rev 97: 1669; (β) Conn MM, Rebek J Jr (1997) Chem Rev 97: 1647CrossRefGoogle Scholar
  27. 2. (a)
    Saalfrank RW, Dresel A, Seitz V, Trummer S, Hampel F, Teichert M, Stalke D, Stadler C, Daub J, Schünemann V, Trautwein AX (1997) Chem Eur J 3: 2058CrossRefGoogle Scholar
  28. 2. (b)
    Saalfrank RW, Stark A, Peters K, von Schnering HG (1988) Angew Chem 100: 878; (1988) Angew Chem Int Ed Engl 27: 851CrossRefGoogle Scholar
  29. 3. (a)
    Caulder DL, Powers RE, Parac TN, Raymond KN (1998) Angew Chem 110: 1940; (1998) Angew Chem Int Ed Engl 37: 1840CrossRefGoogle Scholar
  30. 3. (b)
    Beissel T, Powers RE, Raymond KN (1996) Angew Chem 108: 1166; (1996) Angew Chem Int Ed Engl 35: 1084CrossRefGoogle Scholar
  31. 4. (a)
    Saalfrank RW, Löw N, Kareth S, Seitz V, Hampel F, Stalke D, Teichert M (1998) Angew Chem 110: 182; (1998) Angew Chem Int Ed Engl 37: 172CrossRefGoogle Scholar
  32. 4. (b)
    Saalfrank RW, Löw N, Demleitner B, Stalke D, Teichert M (1998) Chem Eur J 4: 1305CrossRefGoogle Scholar
  33. 4. (c)
    Saalfrank RW, Löw N, Hampel F, Stachel H-D (1996) Angew Chem 108: 2353; (1996) Angew Chem Int Ed Engl 35: 2209CrossRefGoogle Scholar
  34. 5. (a)
    Taft KL, Delfs CD, Papaefthymiou GC, Foner S, Gatteschi D, Lippard SJ (1994) J Am Chem Soc 116: 823CrossRefGoogle Scholar
  35. 5. (b)
    Gatteschi D, Caneschi A, Sessoli R, Cornia A (1996) Chem Soc Rev 101Google Scholar
  36. 6.
    Watton SP, Fuhrmann P, Pence LE, Caneschi A, Cornia A, Abbati GL, Lippard SJ (1997) Angew Chem 109: 2917; (1997) Angew Chem Int Ed Engl 36: 2774CrossRefGoogle Scholar
  37. 7.
    Saalfrank RW, Bernt I, Uller E, Hampel F (1997) Angew Chem 109: 2596; (1997) Angew Chem Int Ed Engl 36: 2482CrossRefGoogle Scholar
  38. 8. (a)
    Hasenknopf B, Lehn J-M, Kneisel BO, Braun G, Fenske D (1996) Angew Chem 108: 1987; (1996) Angew Chem Int Ed Engl 35: 1838CrossRefGoogle Scholar
  39. 8. (b)
    Lehn J-M (1999) Chem Eur J 5: 2455CrossRefGoogle Scholar
  40. 9.
    Uller E, Heinemann F, Saalfrank RW, unpublished resultsGoogle Scholar
  41. 10.
    Hasenknopf B, Lehn J-M, Boumediene N, Dupont-Gervais A, Van Dosselaer A, Kneisel B, Fenske D (1997) J Am Chem Soc 119: 10965CrossRefGoogle Scholar
  42. 11. (a)
    Gorun SM, Papaefthymiou GC, Frankel RB, Lippard SJ (1987) J Am Chem Soc 109: 4244CrossRefGoogle Scholar
  43. 11. (b)
    Lippard SJ (1988) Angew Chem 100: 353; (1988) Angew Chem Int Ed Engl 27: 344CrossRefGoogle Scholar
  44. 11. (c)
    Shweky I, Pence LE, Papaefthymiou GC, Sessoli R, Yun JW, Bino A, Lippard SJ (1997) J Am Chem Soc 119: 1037CrossRefGoogle Scholar
  45. 12. (a)
    Saalfrank RW, Trummer S, Krautscheid H, Schünemann V, Trautwein AX, Hien S, Stadler C, Daub J (1996) Angew Chem 108: 2350; (1996) Angew Chem Int Ed Engl 35: 2206CrossRefGoogle Scholar
  46. 12. (b)
    Saalfrank RW, Löw N, Trummer S, Sheldrick GM, Teichert M, Stalke D (1998) Eur J Inorg Chem 559Google Scholar
  47. 13. (a)
    Saalfrank RW, Seitz V, Caulder DL, Raymond KN, Teichert M, Stalke D (1998) Eur J Inorg Chem 1313Google Scholar
  48. 13. (b)
    Grillo VA, Seddon EJ, Grant CM, Aromi G, Bollinger JC, Folting K, Christou G (1997) Chem Commun 1561Google Scholar
  49. 13. (c)
    Hannon MJ, Painting CL, Jackson A, Hamblin J, Errington W (1997) Chem Commun 1807Google Scholar
  50. 13. (d)
    Albrecht M, Blau O (1997) Chem Commun 345Google Scholar
  51. 13. (e)
    Albrecht M, Fröhlich R (1997) J Am Chem Soc 119: 1656CrossRefGoogle Scholar
  52. 13. (f)
    Albrecht M, Riether C (1996) Chem Ber 129: 829CrossRefGoogle Scholar
  53. 14. (a)
    Saalfrank RW, Stark A, Bremer M, Hummel H-U (1990) Angew Chem 102: 292; (1990) Angew Chem Int Ed Engl 29: 311CrossRefGoogle Scholar
  54. 14. (b)
    Saalfrank RW, Hörner B, Stalke D, Salbeck J (1993) Angew Chem 105: 1223; (1993) Angew Chem Int Ed Engl 32: 1179CrossRefGoogle Scholar
  55. 14. (c)
    Saalfrank RW, Burak R, Breit A, Stalke D, Herbst-Irmer R, Daub J, Porsch M, Bill E, Müther M, Trautwein AX (1994) Angew Chem 106:1697; (1994) Angew Chem Int Ed Engl 33:1621CrossRefGoogle Scholar
  56. 14. (d)
    Saalfrank RW, Burak R, Reihs S, Löw N, Hampel F, Stachel H-D, Lentmaier J, Peters K, Peters EM, von Schnering HG (1995) Angew Chem 107:1085; (1995) Angew Chem Int Ed Engl 34:993CrossRefGoogle Scholar
  57. 15.
    Breit A, Glaser H, Saalfrank RW, unpublished resultsGoogle Scholar
  58. 16.
    Brückner C, Powers RE, Raymond KN (1998) Angew Chem 110: 1937; (1998) Angew Chem Int Ed Engl 37: 1837CrossRefGoogle Scholar
  59. 17.
    Amoroso AJ, Jeffery JC, Jones PL, McCleverty JA, Thornton P, Ward MD (1995) Angew Chem 107: 1577; (1995) Angew Chem Int Ed Engl 34: 1443CrossRefGoogle Scholar
  60. 18.
    Saalfrank RW, Glaser H, Hampel F, Raymond KN, unpublished resultsGoogle Scholar
  61. 19.
    Johnson DW, Xu J, Saalfrank RW, Raymond KN (1999) Angew Chem 111: 3058; (1999) Angew Chem Int Ed Engl 38: 2882CrossRefGoogle Scholar
  62. 20.
    Fujita M, Ogura K (1996) Coord Chem Rev 148: 249CrossRefGoogle Scholar
  63. 21. (a)
    Fujita M, Ogura K (1996) Bull Soc Chem Soc Jpn 69: 1471CrossRefGoogle Scholar
  64. 21. (b)
    Stang PJ, Olenyuk B, Muddiman DC, Smith RD (1997) Organometallics 16: 3094CrossRefGoogle Scholar
  65. 22.
    James SL, Mingos DMP, White AJP, Williams DJ (1998) Chem Commun 2323Google Scholar
  66. 23.
    Roche S, Hasläm C, Adams H, Heath SL, Thomas JA (1998) Chem Commun 1681Google Scholar
  67. 24.
    Abrahams BF, Egan SJ, Robson R (1999) J Am Chem Soc 121: 3535CrossRefGoogle Scholar
  68. 25. (a)
    Hanan GS, Volkmer D, Schubert US, Lehn J-M, Baum G, Fenske D (1997) Angew Chem 109: 1929; (1997) Angew Chem Int Ed Engl 36: 1842CrossRefGoogle Scholar
  69. 25. (b)
    Baxter PNW, Lehn J-M, Kneisel BO, Fenske D (1997) Angew Chem 109: 2067; (1997) Angew Chem Int Ed Engl 36: 1978CrossRefGoogle Scholar
  70. 25. (c)
    Duan C, Liu Z, You X, Xue F, Mak TCW (1997) Chem Commun 381Google Scholar
  71. 25. (d)
    Jeffery JC, Jones PL, Mann KLV, Psllakis E, McCleverty JA, Ward MD, White CM (1997) Chem Commun 175Google Scholar
  72. 26. (a)
    Baxter PNW, Lehn J-M, Baum G, Fenske D (1999) Chem Eur J 5: 102CrossRefGoogle Scholar
  73. 26. (b)
    Baxter PNW, Lehn J-M, Kneisel BO, Baum G, Fenske D (1999) Chem Eur J 5: 113CrossRefGoogle Scholar

Copyright information

© Springer Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Rolf W. Saalfrank
    • 1
  • Eveline Uller
    • 1
  • Bernhard Demleitner
    • 1
  • Ingo Bernt
    • 1
  1. 1.Institut für Organische ChemieUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations