Advertisement

Heteroaromatic Modules for Self-Assembly Using Multiple Hydrogen Bonds

  • Steven C. Zimmerman
  • Perry S. Corbin
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 96)

Abstract

Hydrogen bonding is a directional and moderately strong intermolecular force. Compounds that present multiple hydrogen-bond donor and acceptor groups have proven to be extremely important in creating new self-assembled structures. A review of several classes of organic compounds capable of multiple hydrogen-bond recognition is presented with a focus on the factors that contribute to complex stability.

Keywords

Hydrogen bonding Molecular recognition Self-assembly Complexation Heterocyclic compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. (a)
    Breslow R (1998) Chem Biol 5: R27CrossRefGoogle Scholar
  2. 1. (b)
    Breslow R (1995) Acc Chem Res 28: 146CrossRefGoogle Scholar
  3. 2.
    Eigen M, De Maeyer L (1966) Naturwissenschaften 53: 50CrossRefGoogle Scholar
  4. 3.
    Lehn JM (1988) Angew Chem 27: 89CrossRefGoogle Scholar
  5. 4.
    Zimmerman SC, Murray TJ (1994) In: Wipff G (ed) Computational approaches in supramolecular chemistry. NATO ASI Series, vol 426. Kluwer, Amsterdam, p 109Google Scholar
  6. 5.
    Kyogoku Y, Lord RC, Rich A (1967) Proc Natl Acad Sci USA 57: 250CrossRefGoogle Scholar
  7. 6.
    Bell TW, Hou Z, Zimmerman SC, Thiessen PA (1995) Angew Chem Int Ed Engl 34: 2163 and references cited thereinCrossRefGoogle Scholar
  8. 7.
    Hamilton AD, Pant N, Muehldorf A (1988) Pure Appl Chem 60: 533CrossRefGoogle Scholar
  9. 8.
    Rebek J Jr (1990) Angew Chem Int Ed Engl 29: 245CrossRefGoogle Scholar
  10. 9.
    Zimmerman SC, Wu W (1989) J Am Chem Soc 111: 8054CrossRefGoogle Scholar
  11. 10.
    Kelly TR, Maguire MP (1987) J Am Chem Soc 109: 6549CrossRefGoogle Scholar
  12. 11.
    Kirnos MD, Khudyakov IY, Alexandrushikina NI, Vanyushin BF (1997) Nature 270: 369CrossRefGoogle Scholar
  13. 12.
    Gryaznov S, Schultz RG (1994) Tetrahedron Lett 35: 2489 and references cited thereinCrossRefGoogle Scholar
  14. 13.
    Haaima G, Hansen HF, Christensen L, Dahl O, Nielsen PE (1997) Nucleic Acids Res 25: 4639CrossRefGoogle Scholar
  15. 14.
    Hamilton AD, Van Engen D (1987) J Am Chem Soc 109: 5035CrossRefGoogle Scholar
  16. 15.
    Park TK, Schroeder J, Rebek J Jr (1991) J Am Chem Soc 113: 5125CrossRefGoogle Scholar
  17. 16.
    Schneider HJ, Juneva RK, Simova S (1989) Chem Ber 122: 1211CrossRefGoogle Scholar
  18. 17.
    Kelly TR, Bridger GJ, Zhao C (1990) J Am Chem Soc 112: 8024CrossRefGoogle Scholar
  19. 18.
    Murray TJ, Zimmerman SC (1992) J Am Chem Soc 114: 4010CrossRefGoogle Scholar
  20. 19.
    Beijer FH, Sijbesma RP, Vekemans JAJM, Meijer EW, Kooijman H, Spek AL (1996) J Org Chem 61: 6371CrossRefGoogle Scholar
  21. 20.
    Adrian JC Jr, Wilcox CS (1991) J Am Chem Soc 113: 678CrossRefGoogle Scholar
  22. 21.
    Murray TJ, Zimmerman SC, Kolotuchin SV (1994) Tetrahedron 51: 635 and references cited thereinCrossRefGoogle Scholar
  23. 22.
    Feibush B, Figueroa A, Rosita C, Onan KD, Feibush P, Karger BL (1986) J Am Chem Soc 108: 3310CrossRefGoogle Scholar
  24. 23.
    Hamilton AD, Van Engen D (1987) J Am Chem Soc 109: 5035CrossRefGoogle Scholar
  25. 24.
    Leonard NJ, McCredie RS, Logue MW, Cunddall RL (1973) J Am Chem Soc 95: 2320CrossRefGoogle Scholar
  26. 25.
    Sessler JL, Wang R (1998) J Org Chem 63: 4079CrossRefGoogle Scholar
  27. 26.
    Hamilton AD, Little D (1990) J Chem Soc Chem Commun 297Google Scholar
  28. 27.
    Schall OF, Gokel GW (1994) J Am Chem Soc 116: 6089CrossRefGoogle Scholar
  29. 28.
    Kotera M, Lehn J-M, Vigneron JP (1995) Tetrahedron 51: 1953CrossRefGoogle Scholar
  30. 29.
    Prins LJ, Huskens J, de Jong F, Timmerman P, Reinhoudt DN (1999) Nature 398: 498CrossRefGoogle Scholar
  31. 30.
    Mammen M, Simanek EE, Whitesides GM (1996) J Am Chem Soc 118: 12614CrossRefGoogle Scholar
  32. 31.
    Berstein J, Sterns B, Shaw E, Lott WA (1947) J Am Chem Soc 69: 1151CrossRefGoogle Scholar
  33. 32. (a)
    Berman A, Izraeli ES, Levanon H, Wang B, Sessler JL (1995) J Am Chem Soc 117: 8252CrossRefGoogle Scholar
  34. 32. (b)
    Sessler JL, Wang B, Harriman A (1993) J Am Chem Soc 115: 10418CrossRefGoogle Scholar
  35. 33.
    Roberts C, Bandaru R, Switzer C (1997) J Am Chem Soc 119: 4640CrossRefGoogle Scholar
  36. 34.
    Kral V, Sessler JL (1995) Tetrahedron 51: 539CrossRefGoogle Scholar
  37. 35.
    Hisatome M, Ikeda K, Kishibata S, Yamakawa K (1993) Chem Lett 1357Google Scholar
  38. 36.
    Chen L, Sakai N, Moshiri ST, Matile S (1998) Tetrahedron Lett 39: 3627CrossRefGoogle Scholar
  39. 37.
    Fenlon EE, Murray TJ, Baloga MH, Zimmerman SC (1993) J Org Chem 58: 6625CrossRefGoogle Scholar
  40. 38.
    Marsh A, Nolen EG, Gardinier KM, Lehn J-M (1994) Tetrahedron Lett 35: 397CrossRefGoogle Scholar
  41. 39.
    Marsh A, Silvestri M, Lehn J-M (1996) Chem Commun 1527Google Scholar
  42. 40.
    Lehn J-M, Mascal M, DeCian A, Fischer J (1992) J Chem Soc Perkin Trans 2: 461Google Scholar
  43. 41.
    Petersen P, Wu W, Fenlon EE, Kim S, Zimmerman SC (1996) Bioorg Med Chem 4: 1107CrossRefGoogle Scholar
  44. 42.
    Kolotuchin SV, Zimmerman SC (1998) J Am Chem Soc 120: 9092CrossRefGoogle Scholar
  45. 43.
    Mascal M, Hext NM, Warmuth R, Moore MH, Turkenburg JP (1996) Angew Chem Int Ed Engl 35: 2204CrossRefGoogle Scholar
  46. 44.
    Meyer H, Bossert F, Horstmann H (1978) Liebigs Ann Chem 1476Google Scholar
  47. 45.
    Bell DA, Anslyn EV (1995) Tetrahedron 51: 7161CrossRefGoogle Scholar
  48. 46.
    Beijer FH, Kooijman H, Spek AL, Sijbesma RP, Meijer EW (1998) Angew Chem Int Ed Engl 37: 75CrossRefGoogle Scholar
  49. 47.
    Corbin PS, Zimmerman SC (1998) J Am Chem Soc 120: 9710CrossRefGoogle Scholar
  50. 48.
    Beijer FH, Sijbesma RP, Kooijman H, Spek AL, Meijer EW (1998) J Am Chem Soc 120: 6761CrossRefGoogle Scholar
  51. 49.
    Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Hirschberg JHK, Lange RFM, Lowe JKL, Meijer EW (1997) Science 278: 1601CrossRefGoogle Scholar
  52. 50.
    Pfleiderer M, Pfleiderer W (1992) Heterocycles 33: 905CrossRefGoogle Scholar
  53. 51.
    Corbin PS, unpublished resultsGoogle Scholar
  54. 52.
    Sessler JL, Wang R (1998) Angew Chem Int Ed Engl 37: 1726CrossRefGoogle Scholar
  55. 53.
    Liming U, Kühl C (1998) Tetrahedron Lett 39: 5735CrossRefGoogle Scholar
  56. 54.
    Corbin P, Zimmerman SC, submitted for publicationGoogle Scholar
  57. 55.
    Jorgensen WL (1998) J Phys Chem 102: 3782Google Scholar
  58. 56.
    Hopkins HP, Alexander CJ, Ali SZ (1978) J Phys Chem 82: 1268CrossRefGoogle Scholar
  59. 57.
    Schneider HJ, Juneva RK, Simova S (1989) Chem Ber 122: 1211. This analysis has been updated to include secondary hydrogen bonding (see [61])CrossRefGoogle Scholar
  60. 58.
    Jorgensen WL, Pranata J (1990) J Am Chem Soc 112: 2008; Pranata J, Wierschke SG, Jorgensen WL (1991) J Am Chem Soc 113: 2810CrossRefGoogle Scholar
  61. 59.
    Zimmerman SC, Murray TJ (1994) Tetrahedron Lett 35: 4077CrossRefGoogle Scholar
  62. 60.
    Gardner RR, Gellman SH (1995) J Am Chem Soc 117: 10411CrossRefGoogle Scholar
  63. 61.
    Sartorius J, Schneider HJ (1996) Eur J Chem 2: 1446CrossRefGoogle Scholar
  64. 62.
    Cram DJ (1986) Angew Chem Int Ed Engl 25: 1039CrossRefGoogle Scholar
  65. 63.
    Cram DJ, Trueblood KN (1985) in Vogtle F, Weber E (eds) Host guest complex chemistry, macrocycles. Springer, Berlin Heidelberg New York, p 125Google Scholar
  66. 64.
    Zimmerman SC, Mrksich M, Baloga M (1989) J Am Chem Soc 111: 8528CrossRefGoogle Scholar
  67. 65.
    Page MI, Jencks WP (1971) Proc Natl Acad Sci USA 68: 1678CrossRefGoogle Scholar
  68. 66.
    Searle MS, Williams DH (1992) J Am Chem Soc 114: 10690CrossRefGoogle Scholar
  69. 67.
    Eblinger F, Schneider HJ (1998) Angew Chem Int Ed Engl 37: 826. This paper, which claims to report the first study wherein the number of free rotations within supramolecular complexes are systematically varied (see however [64]), studies the interaction between dicarboxylates and diamide. It is complicated by the fact that rigid and flexible dicarboxylates may bind the diamides in different orientationsCrossRefGoogle Scholar
  70. 68.
    Hamilton AD, Pant N (1998) J Chem Soc Chem Commun 765Google Scholar
  71. 69.
    Murray TJ, Zimmerman SC (1995) Tetrahedron Lett 36: 7627CrossRefGoogle Scholar
  72. 70.
    Watson JD, Crick FHC (1953) Nature 171: 964CrossRefGoogle Scholar
  73. 71.
    Douhal A, Kim SK, Zewail AH (1995) Nature 378: 260CrossRefGoogle Scholar
  74. 72.
    Robinson H, Gao YG, Bauer C, Roberts C, Switzer C, Wang AHJ (1998) Biochemistry 37: 10897CrossRefGoogle Scholar
  75. 73.
    Goodman MF (1995) Nature 378: 237CrossRefGoogle Scholar
  76. 74.
    Beak P (1977) Acc Chem Res 10: 186CrossRefGoogle Scholar
  77. 75.
    Fersht AR (1987) Trends Biochem Sci 12: 301CrossRefGoogle Scholar
  78. 76.
    Fan E, van Araman S, Kincaid S, Hamilton AD (1993) J Am Chem Soc 115: 369; Wilcox CS, Kim EI, Romano D, Kuo LH, Burt AR, Curran DP (1995) Tetrahedron 55: 621CrossRefGoogle Scholar
  79. 77.
    Hamilton AD, Fan E, Van Arman S, Vicent C, Tellado FG, Geib SJ (1993) Supramol Chem 1: 247CrossRefGoogle Scholar
  80. 78.
    Drain CM, Fischer R, Nolen EG, Lehn J-M (1993) J Chem Soc Chem Commun 243Google Scholar
  81. 79.
    Zerkowski JA, Seto CT, Whitesides GM (1992) J Am Chem Soc 114: 5473CrossRefGoogle Scholar
  82. 80.
    Seto CT, Whitesides GM (1993) J Am Chem Soc 115: 905CrossRefGoogle Scholar
  83. 81.
    Crego Calama M, Fokken R, Nibbering NMM, Timmerman P, Reinhoudt DN (1998) J Chem Soc Chem Commun 1021Google Scholar
  84. 82.
    Kimizuka N, Kawasaki T, Hirata K, Kunitake T (1995) J Am Chem Soc 117: 6360CrossRefGoogle Scholar
  85. 83.
    Lehn J-M, Mascal M, DeCian A, Fischer J (1990) J Chem Soc Chem Commun 479Google Scholar
  86. 84.
    Ariga K, Kunitake T (1998) Acc Chem Res 31: 371 and references cited thereinCrossRefGoogle Scholar
  87. 85.
    Bohanon TM, Denzinger S, Fink R, Paulus W, Ringsdorf H, Weck M (1995) Angew Chem 34: 58CrossRefGoogle Scholar
  88. 86.
    Nowick JS, Cao T, Noronha G (1994) J Am Chem Soc 116: 3285CrossRefGoogle Scholar
  89. 87.
    Zimmerman N, Moore JS, Zimmerman SC (1998) Chem Ind 604Google Scholar
  90. 88.
    Gulick-Krymicki T, Fouquey AM, Lehn J-M (1993) Proc Natl Acad Sci 90: 163CrossRefGoogle Scholar
  91. 89.
    Kotera M, Lehn J-M, Vigneron JP (1994) J Chem Soc Chem Commun 197Google Scholar

Copyright information

© Springer Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Steven C. Zimmerman
    • 1
  • Perry S. Corbin
    • 1
  1. 1.Department of ChemistryUniversity of IllinoisUrbanaUSA

Personalised recommendations