Advertisement

Controlling Hydrogen Bonding: From Molecular Recognition to Organogelation

  • Rosa E. Meléndez
  • Andrew J. Carr
  • Brian R. Linton
  • Andrew D. Hamilton
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 96)

Abstract

Hydrogen bonding has been studied extensively in solution, in the solid state and using theoretical methods. These studies complement each other and contribute to the progress made in understanding the behavior of this intermolecular interaction and its implications in chemistry, biology and physics. Extensive progress has been made in employing hydrogen bonding in fields such as self-assembly, host-guest recognition and crystal engineering. Recently, various hydrogen-bonding groups have been used in the design of organogelators, molecules that gel various solvents. In this chapter, we will outline the important work that has laid the foundations for the use of different hydrogen-bonding motifs in small host recognition studies and how this can be exploited in the design of self-assembling and gelating structures.

Keywords

Molecular recognition Hydrogen bonding Organogelation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jeffrey GA, Saenger W (ed) (1991) Hydrogen bonding in biological structures. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University, New YorkGoogle Scholar
  3. 3.
    Philp D, Stoddart JF (1996) Angew Chem Int Ed Engl 35: 1154CrossRefGoogle Scholar
  4. 4.
    Desiraju GR (1989) Crystal engineering, the design of organic solids. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Desiraju GR (1995) The crystal as a supramolecular entity, vol 2. John Wiley, ChichesterGoogle Scholar
  6. 6.
    Martin TW, Derewenda ZS (1999) Nat Struct Biol 6: 403CrossRefGoogle Scholar
  7. 7.
    Taylor R, Kennard O (1983) Acta Crystallogr Sect B 39: 133Google Scholar
  8. 8.
    Taylor R, Kennard O (1984) Acc Chem Res 17: 320CrossRefGoogle Scholar
  9. 9.
    Etter MC (1990) Acc Chem Res 23: 120CrossRefGoogle Scholar
  10. 10.
    Leiserowitz L (1976) Acta Crystallogr B 32: 775Google Scholar
  11. 11.
    MacDonald JC, Whitesides GM (1994) Chem Rev 94: 2383CrossRefGoogle Scholar
  12. 12.
    Etter MC (1991) J Phys Chem 95: 4601CrossRefGoogle Scholar
  13. 13.
    Zaworotko MJ (1994) Chem Soc Rev 283Google Scholar
  14. 14.
    Aakeröy CB, Seddon KR (1993) Chem Soc Rev 397Google Scholar
  15. 15.
    Desiraju GR (1991) Acc Chem Res 24: 290CrossRefGoogle Scholar
  16. 16.
    Desiraju GR (1996) Acc Chem Res 29: 441CrossRefGoogle Scholar
  17. 17.
    Emsley J (1980) Chem Soc Rev 9: 91CrossRefGoogle Scholar
  18. 18.
    McMahon TB, Larson JW (1982) J Am Chem Soc 104: 5848CrossRefGoogle Scholar
  19. 19.
    Kelly TR, Kim MH (1994) J Am Chem Soc 116: 7072CrossRefGoogle Scholar
  20. 20.
    Pranata J, Wierschke SG, Jorgensen WL (1991) J Am Chem Soc 113: 2810CrossRefGoogle Scholar
  21. 21.
    Murry TJ, Zimmerman SC (1992) J Am Chem Soc 114: 4010CrossRefGoogle Scholar
  22. 22.
    Hamilton AD, Engen DJV (1987) J Am Chem Soc 109: 5035CrossRefGoogle Scholar
  23. 23.
    Kyugoku Y, Lord RC, Rich A (1967) Proc Natl Acad Sci USA 57: 250CrossRefGoogle Scholar
  24. 24.
    Park TK, Schroeder J, Rebek J Jr (1991) J Am Chem Soc 113: 5125CrossRefGoogle Scholar
  25. 25.
    Jorgensen WL, Pranata J (1990) J Am Chem Soc 112: 2008CrossRefGoogle Scholar
  26. 26.
    Sartorius J, Schneider H-J (1996) Chem Eur J 2: 1446CrossRefGoogle Scholar
  27. 27.
    Sun X, Lorenzi GP (1994) Helv Chim Acta 77: 1520CrossRefGoogle Scholar
  28. 28.
    Adrian JC, Wilcox CS (1991) J Am Chem Soc 113: 678CrossRefGoogle Scholar
  29. 29.
    Rekharsky MV, Inoue Y (1998) Chem Rev 5: 1875CrossRefGoogle Scholar
  30. 30.
    Berger M, Schmidtchen FP (1998) Angew Chem Int Ed Engl 37: 2694CrossRefGoogle Scholar
  31. 31.
    Inoue Y, Liu Y, Tong L-H, Jin D-S (1993) J Am Chem Soc 115: 475CrossRefGoogle Scholar
  32. 32.
    Almdal K, Dyre J, Hvidt S, Kramer O (1993) Polymer Gels Networks 1: 5CrossRefGoogle Scholar
  33. 33.
    Terech P, Weiss RG (1997) Chem Rev 97: 3133CrossRefGoogle Scholar
  34. 34.
    Geiger C, Stanescu M, Chen L, Whitten DG (1999) Langmuir 15: 2241CrossRefGoogle Scholar
  35. 35.
    Esch JV, Schoonbeek F, de Loos M, Veen EM, Kellogg RM, Feringa BL (1999) In: Ungaro R, Dalcanale E (eds) Supramolecular science: where it is and where it is going. Kluwer Academic Publishers, NetherlandsGoogle Scholar
  36. 36.
    Garcia-Tellado F, Geib SJ, Goswami S, Hamilton AD (1991) J Am Chem Soc 113: 9265CrossRefGoogle Scholar
  37. 37.
    Yang J, Marendaz J-L, Geib SJ, Hamilton AD (1994) Tetrahedron Lett 35: 3665CrossRefGoogle Scholar
  38. 38.
    Leiserowitz L, Tuval M (1978) Acta Crystallogr B 34: 1230Google Scholar
  39. 39.
    Leiserowitz L, Schmidt GMJ (1969) J Chem Soc 2372Google Scholar
  40. 40.
    Ducharme Y, Wuest JD (1988) J Org Chem 53: 5787CrossRefGoogle Scholar
  41. 41.
    Garcia-Tellado F, Goswami S, Chang SK, Geib SJ, Hamilton AD (1990) J Am Chem Soc 112: 7393CrossRefGoogle Scholar
  42. 42.
    Geib SJ, Vicent C, Fan E, Hamilton AD (1993) Angew Chem Int Ed Engl 32: 119CrossRefGoogle Scholar
  43. 43.
    Hamuro Y, Geib SJ, Hamilton AD (1994) Angew Chem Int Ed Engl 33: 446CrossRefGoogle Scholar
  44. 44.
    Kavallieratos K, de Gala SR, Austin DJ, Crabtree RH (1997) J Am Chem Soc 119: 2325CrossRefGoogle Scholar
  45. 45.
    Kavallieratos K, Bertao CM, Crabtree RH (1999) J Org Chem 64: 1675CrossRefGoogle Scholar
  46. 46.
    Hanabusa K, Yamada M, Kimura M, Shirai H (1996) Angew Chem Int Ed Engl 35: 1949CrossRefGoogle Scholar
  47. 47.
    Fan E, Yang J, Geib SJ, Stoner TC, Hopkins MD, Hamilton AD (1995) J Chem Soc Chem Commun 1251Google Scholar
  48. 48.
    Yasuda Y, Iishi E, Inada H, Shirota Y (1996) Chem Lett 575Google Scholar
  49. 49.
    Yasuda Y, Takebe Y, Fukumoto M, Inada H, Shirota Y (1996) Adv Mater 8: 740CrossRefGoogle Scholar
  50. 50.
    Hanabusa K, Kawakami A, Kimura M, Shirai H (1997) Chem Lett 191Google Scholar
  51. 51.
    Kato T, Kutsuna T, Hanabusa K, Ukon M (1998) Adv Mater 10: 606CrossRefGoogle Scholar
  52. 52.
    Masuda M, Hanada T, Yase K, Shimizu T (1998) Macromolecules 31: 9403CrossRefGoogle Scholar
  53. 53.
    Inoue K, Ono Y, Kanekiyo Y, Hanabusa K, Shinkai S (1999) Chem Lett 429Google Scholar
  54. 54.
    Fan E, Arman SAV, Kincaid S, Hamilton AD (1993) J Am Chem Soc 115: 369CrossRefGoogle Scholar
  55. 55.
    Smith PJ, Reddington MV, Wilcox CS (1992) Tetrahedron Lett 33: 6085CrossRefGoogle Scholar
  56. 56.
    Curran DP, Kuo LH (1994) J Org Chem 59: 3259CrossRefGoogle Scholar
  57. 57.
    Curran DP, Kuo LH (1995) Tetrahedron Lett 36: 6647Google Scholar
  58. 58.
    Raposo C, Crego M, Mussons ML, Caballero MC, Moran JR (1994) Tetrahedron Lett 36: 45&9Google Scholar
  59. 59.
    Hamann BC, Branda NR, Rebek J Jr (1993) Tetrahedron Lett 34: 6837CrossRefGoogle Scholar
  60. 60.
    Etter MC, Urbanczyk-Lipkowska Z, Zia-Ebrahimi M, Panunto TW (1990) J Am Chem Soc 112: 8415CrossRefGoogle Scholar
  61. 61.
    Zhao X, Chang Y-L, Fowler FW, Lauher JW (1990) J Am Chem Soc 112: 6627CrossRefGoogle Scholar
  62. 62.
    Chang Y-L, West M-A, Fowler FW, Lauher JW (1993) J Am Chem Soc 115: 5991CrossRefGoogle Scholar
  63. 63.
    Hanabusa K, Shimura K, Hirose K, Kimura M, Shirai H (1996) Chem Lett 885Google Scholar
  64. 64.
    van Esch J, Kellogg RM, Feringa BL (1997) Tetrahedron Lett 38: 281CrossRefGoogle Scholar
  65. 65.
    Carr AJ, Melendez R, Geib SJ, Hamilton AD (1998) Tetrahedron Lett 39: 7447CrossRefGoogle Scholar
  66. 66.
    deLoos M, van Esch J, Stokroos I, Kellogg RM, Feringa BL (1997) J Am Chem Soc 119: 12675CrossRefGoogle Scholar
  67. 67.
    Schoonbeek FS, van Esch JH, Wegewijs B, Rep DBA, de Haas MP, Klapwijk TM, Kellogg RM, Feringa BL (1999) Angew Chem Int Ed Engl 38: 1393CrossRefGoogle Scholar
  68. 68.
    van Esch J, Schoonbeek F, de Loos M, Kooijman H, Spek AL, Kellogg RM, Feringa BL (1999) Chem Eur J 5: 937CrossRefGoogle Scholar
  69. 69.
    Zerkowski JA, MacDonald JC, Seto CT, Wierda DA, Whitesides GM (1994) J Am Chem Soc 116: 2382CrossRefGoogle Scholar
  70. 70.
    Zerkowski JA, Seto CT, Whitesides GM (1992) J Am Chem Soc 114: 5473CrossRefGoogle Scholar
  71. 71.
    Lehn J-M, Mascal M, De Cian A, Fischer J (1990) J Chem Soc Chem Commun 479Google Scholar
  72. 72.
    Hanabusa K, Miki T, Taguchi Y, Koyama T, Shirai H (1993) J Chem Soc Chem Commun 1382Google Scholar
  73. 73.
    Won S, Shinkai S (1997) Nanotechnology 8: 179CrossRefGoogle Scholar
  74. 74.
    Chang S-K, Hamilton AD (1988) J Am Chem Soc 110: 1318CrossRefGoogle Scholar
  75. 75.
    Chang S-K, Van Engen D, Fan E, Hamilton AD (1991) J Am Chem Soc 113: 7640CrossRefGoogle Scholar
  76. 76.
    Tecilla P, Jubian V, Hamilton AD (1995) Tetrahedron 51: 435CrossRefGoogle Scholar
  77. 77.
    Inoue K, Ono Y, Kanekiyo Y, Ishi-i T, Yoshihara K, Shinkai S (1999) J Org Chem 64: 2933CrossRefGoogle Scholar
  78. 78.
    Tata M, John VT, Waguespack YY, McPherson GL (1994) J Am Chem Soc 116: 9464CrossRefGoogle Scholar
  79. 79.
    Hanabusa K, Okui K, Karaki K, Koyama T, Shirai H (1992) J Chem Soc Chem Commun 137Google Scholar
  80. 80.
    Hanabusa K, Okui K, Karaki K, Kimura M, Shirai H (1997) J Colloid Interface Sci 195: 86CrossRefGoogle Scholar
  81. 81.
    Hanabusa K, Tange J, Taguchi Y, Koyama T, Shirai H (1993) J Chem Soc Chem Commun 390Google Scholar
  82. 82.
    Hanabusa K, Matsumoto Y, Miki T, Koyama T, Shirai H (1994) J Chem Soc Chem Commun 1401Google Scholar
  83. 83.
    Yoza K, Ono Y, Yoshihara K, Akao T, Shinmori H, Takeuchi M, Shinkai S, Reinhoudt DN (1998) Chem Commun 907Google Scholar
  84. 84.
    Amanokura N, Yoza K, Shinmori H, Shinkai S, Reinhoudt DN (1998) J Chem Soc Perkin Trans 2 2585Google Scholar
  85. 85.
    Tachibana T, Mori T, Hori K (1980) Bull Chem Soc Jpn 53: 1714CrossRefGoogle Scholar
  86. 86.
    Lu L, Weiss RG (1996) Chem Comm 2029Google Scholar
  87. 87.
    Oda R, Huc I, Candau SJ (1998) Angew Chem Int Ed Engl 37: 2689CrossRefGoogle Scholar
  88. 88.
    Brotin T, Utermöhlen R, Fages F, Bouas-Laurent H, Desvergne J-P (1991) J Chem Soc Chem Commun 416Google Scholar
  89. 89.
    Placin F, Colomès M, Desvergne J-P (1997) Tetrahedron Lett 38: 2665CrossRefGoogle Scholar
  90. 90.
    Clavier GM, Brugger J-F, Bouas-Laurent H, Pozzo J-L (1998) J Chem Soc Perkin Trans 2: 2527Google Scholar
  91. 91.
    Lin Y-C, Kachar B, Weiss RG (1989) J Am Chem Soc 111: 5542CrossRefGoogle Scholar
  92. 92.
    Terech P, Furman I, Weiss RG (1995) J Phys Chem 99: 9558CrossRefGoogle Scholar
  93. 93.
    Tian HJ, Inoue K, Yoza K, Ishi-i T, Shinkai S (1998) Chem Lett 871Google Scholar
  94. 94.
    Hishikawa Y, Sada K, Watanabe R, Miyata M, Hanabusa K (1998) Chem Lett 795Google Scholar
  95. 95.
    Maitra U, Kumar PV, Chandra N, D’Souza LJ, Prasanna MD, Raju AR (1999) Chem Commun 595Google Scholar

Copyright information

© Springer Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Rosa E. Meléndez
    • 1
  • Andrew J. Carr
    • 1
  • Brian R. Linton
    • 1
  • Andrew D. Hamilton
    • 1
  1. 1.Department of ChemistryYale UniversityNew HavenUSA

Personalised recommendations