Advertisement

A Generalized Quantifier Concept in Computational Complexity Theory

  • Heribert Vollmer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1754)

Abstract

A notion of generalized quantifier in computational complexity theory is explored and used to give a unified treatment of leaf language definability, oracle separations, type 2 operators, and circuits with monoidal gates. Relations to Lindström quantifiers are pointed out.

Keywords

Polynomial Time Turing Machine Regular Language Computation Tree Proof Sketch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. All96.
    E. Allender. A note on uniform circuit lower bounds for the counting hierarchy. In Proceedings 2nd Computing and Combinatorics Conference, volume 1090 of Lecture Notes in Computer Science, pages 127–135. Springer Verlag, 1996.Google Scholar
  2. Bar89.
    D. A. Mix Barrington. Bounded-width polynomial size branching programs recognize exactly those languages in NC1. Journal of Computer and System Sciences, 38:150–164, 1989.CrossRefMathSciNetGoogle Scholar
  3. Bar92.
    D. A. Mix Barrington. Quasipolynomial size circuit classes. In Proceedings 7th Structure in Complexity Theory, pages 86–93. IEEE Computer Society Press, 1992.Google Scholar
  4. BC94.
    D. P. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. International Series in Computer Science. Prentice Hall, London, 1994.Google Scholar
  5. BCS92.
    D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity classes. Theoretical Computer Science, 104:263–283, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  6. BDG95.
    J. L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. Texts in Theoretical Computer Science. Springer Verlag, Berlin Heidelberg, 2nd edition, 1995.Google Scholar
  7. BI94.
    D. A. Mix Barrington and N. Immerman. Time, hardware, and uniformity. In Proceedings 9th Structure in Complexity Theory, pages 176–185. IEEE Computer Society Press, 1994.Google Scholar
  8. BIS90.
    D. A. Mix Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. Journal of Computer and System Sciences, 41:274–306, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  9. BKS96.
    B. Borchert, D. Kuske, and F. Stephan. On existentially first-order definable languages and their relation to NP. Technical Report MATH-AL-11-1996, Institut für Algebra, Technische Universität Dresden, 1996.Google Scholar
  10. BL96.
    B. Borchert and A. Lozano. Succinct circuit representations and leaf language classes are basically the same concept. Information Processing Letters, 58:211–215, 1996.CrossRefMathSciNetGoogle Scholar
  11. BLT92.
    J. L. Balcázar, A. Lozano, and J. Torán. The complexity of algorithmic problems on succinct instances. In R. Baeza-Yates and U. Manber, editors, Computer Science. Plenum Press, New York, 1992.Google Scholar
  12. Bor94.
    B. Borchert. On the acceptance power of regular languages. In Proceedings 11th Symposium on Theoretical Aspects of Computer Science, volume 775 of Lecture Notes in Computer Science, pages 449–460. Springer Verlag, 1994.Google Scholar
  13. BRS91.
    R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection. In Proceedings 23rd Symposium on Theory of Computing, pages 1–9. ACM Press, 1991.Google Scholar
  14. BS97.
    B. Borchert and R. Silvestri. The general notion of a dot operator. In Proceedings 12th Conference on Computational Complexity, pages 26–44. IEEE Computer Society Press, 1997.Google Scholar
  15. BT88.
    D. A. Mix Barrington and D. Thérien. Finite monoids and the fine structure of NC1. Journal of the Association of Computing Machinery, 35:941–952, 1988.Google Scholar
  16. Bur96.
    H. J. Burtschick. Berechnungs-und Beschreibungskomplexität von Zählfunktionen und Lindströmquantoren. PhD thesis, Fachbereich Informatik, TU-Berlin, 1996.Google Scholar
  17. BV96.
    H.-J. Burtschick and H. Vollmer. Lindström quantifiers and leaf language definability. Technical Report 96-005, Electronic Colloquium on Computational Complexity, 1996. Submitted for publication.Google Scholar
  18. BVW96.
    R. V. Book, H. Vollmer, and K. W. Wagner. On type-2 probabilistic quantifiers. In Proceedings 23rd International Colloquium on Automata, Languages and Programming, volume 1099 of Lecture Notes in Computer Science, pages 369–380. Springer Verlag, 1996.Google Scholar
  19. BW96.
    H. Baier and K. W. Wagner. The analytic polynomial-time hierarchy. Technical Report 148, Institut für Informatik, Universität Würzburg, 1996.Google Scholar
  20. CC95.
    L. Cai and J. Chen. On input read-modes of alternating turing machines. Theoretical Computer Science, 148:33–55, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  21. CF91.
    J.-Y. Cai and M. Furst. PSPACE survives constand-width bottlenecks. International Journal of Foundations of Computer Science, 2:67–76, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  22. CHVW97.
    K. Cronauer, U. Hertrampf, H. Vollmer, and K. W. Wagner. The chain method to separate counting classes. Theory of Computing Systems, 1997. To appear.Google Scholar
  23. CMTV96.
    H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1 computation. In Proceedings 11th Computational Complexity, pages 12–21. IEEE Computer Society Press, 1996.Google Scholar
  24. Ebb85.
    H.-D. Ebbinghaus. Extended logics: The general framework. In J. Barwise and S. Feferman, editors, Model-Theoretic Logics, Perspectives in Mathematical Logic, chapter II, pages 25–76. Springer Verlag, 1985.Google Scholar
  25. EF95.
    H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, Berlin Heidelberg, 1995.zbMATHGoogle Scholar
  26. Eil76.
    S. Eilenberg. Automata, Languages, and Machines, volume B. Academic Press, New York, 1976.zbMATHGoogle Scholar
  27. Fag74.
    R. Fagin. Generalized first-order spectra and polynomial time recognizable sets. In R. Karp, editor, Complexity of Computations, pages 43–73, 1974.Google Scholar
  28. For97.
    L. Fortnow. Counting complexity. In A. Selmand and L. A. Hemaspaandra, editors, Complexity Theory Retrospective II, pages 81–107. Springer Verlag, New York, 1997.Google Scholar
  29. FSS84.
    M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomialtime hierarchy. Mathematical Systems Theory, 17:13–27, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  30. Got95.
    G. Gottlob. Relativized logspace and generalized quantifiers over finite structures. Technical Report CD-TR-95/76, Institut for Information Systems, Vienna University of Technology, 1995. An extended abstract appeared in the proceedings of the 10th Symposium on Logic in Computer Science, 1995.Google Scholar
  31. Her95a.
    U. Hertrampf. Classes of bounded counting type and their inclusion relations. In Proceedings 12th Symposium on Theoretical Aspects of Computer Science, volume 900 of Lecture Notes in Computer Science, pages 60–70. Springer Verlag, 1995.Google Scholar
  32. Her95b.
    U. Hertrampf. Regular leaf-languages and (non-) regular tree shapes. Technical Report A-95-21, Institut für Mathematik und Informatik, Medizinische Universität zu Lübeck, 1995.Google Scholar
  33. Her97.
    U. Hertrampf. Acceptance by transformation monoids (with an application to local self reductions). In Proceedings 12th Conference on Computational Complexity, pages 213–224. IEEE Computer Society Press, 1997.Google Scholar
  34. HLS+93._U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On the power of polynomial time bit-reductions. In Proceedings 8th Structure in Complexity Theory, pages 200–207, 1993.Google Scholar
  35. HVW95.
    U. Hertrampf, H. Vollmer, and K. W. Wagner. On the power of numbertheoretic operations with respect to counting. In Proceedings 10th Structure in Complexity Theory, pages 299–314, 1995.Google Scholar
  36. HVW96.
    U. Hertrampf, H. Vollmer, and K. W. Wagner. On balanced vs. unbalanced computation trees. Mathematical Systems Theory, 29:411–421, 1996.zbMATHMathSciNetGoogle Scholar
  37. Imm89.
    N. Immerman. Expressibility and parallel complexity. SIAM Journal on Computing, 18:625–638, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  38. JMT94.
    B. Jenner, P. McKenzie, and D. Thérien. Logspace and logtime leaf languages. In 9th Annual Conference Structure in Complexity Theory, pages 242–254, 1994.Google Scholar
  39. Joh90.
    D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume A, pages 67–161. Elsevier, 1990.Google Scholar
  40. KSV97.
    S. Kosub, H. Schmitz, and H. Vollmer. Uniformly defining complexity classes of functions. Technical report, Institut für Informatik, Universität Würzburg, 1997.Google Scholar
  41. Lan86.
    K. J. Lange. Two characterizations of the logarithmic alternation hierarchy. In Proceedings 12th Symposium on Mathematical Foundations of Computer Science, volume 233 of Lecture Notes in Computer Science, pages 518–526. Springer Verlag, 1986.Google Scholar
  42. Lin66.
    P. Lindström. First order predicate logic with generalized quantifiers. Theoria, 32:186–195, 1966.MathSciNetGoogle Scholar
  43. MP93.
    J. A. Makowsky and Y. B. Pnueli. Oracles and quantifiers. In Computer Science Logic, volume 832 of Lecture Notes in Computer Science, pages 189–222. Springer Verlag, 1993.CrossRefGoogle Scholar
  44. MP94.
    J. A. Makowsky and Y. B. Pnueli. Logics capturing relativized complexity classes uniform. In D. Leivant, editor, Logic and Computational Complexity, volume 1995 of Lecture Notes in Computer Science. Springer Verlag, 1994.Google Scholar
  45. Pap94.
    C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.zbMATHGoogle Scholar
  46. RS97.
    R. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume I. Springer Verlag, 1997.Google Scholar
  47. RV97.
    K. Regan and H. Vollmer. Gap-languages and log-time complexity classes. Theoretical Computer Science, 1997. To appear.Google Scholar
  48. Sip83.
    M. Sipser. Borel sets and circuit complexity. In Proceedings of the 15th Symposium on Theory of Computing, pages 61–69. ACM Press, 1983.Google Scholar
  49. SM73.
    L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In Proceedings 5th ACM Symposium on the Theory of Computing, pages 1–9, 1973.Google Scholar
  50. Ste91.
    I. A. Stewart. Comparing the expressibility of languages formed using NPcomplete operators. Journal of Logic and Computation, 1:305–330, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  51. Ste92.
    I. A. Stewart. Using the Hamilton path operator to capture NP. Journal of Computer and System Sciences, 45:127–151, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  52. Str94.
    H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston, 1994.zbMATHGoogle Scholar
  53. Thé81.
    D. Thérien. Classification of finite monoids: the language approach. Theoretical Computer Science, 14:195–208, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  54. Tod91.
    S. Toda. PP is as hard as the polynomial time hierarchy. SIAM Journal on Computing, 20:865–877, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  55. Tor91.
    J. Toran. Complexity classes defined by counting quantifiers. Journal of the ACM, 38:753–774, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  56. Vää94.
    J. Väänänen. A short course on finite model theory. Graduate Texts in Mathematics vol. 1, University of Helsinki, 1995.Google Scholar
  57. Vei96.
    H. Veith. Succinct representation, leaf languages, and projection reductions. In Proceedings 10th Structure in Complexity Theory, pages 118–126. IEEE Computer Society Press, 1996.Google Scholar
  58. Ver93.
    N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polynomial theory of algorithms. Izvestija Rossijskoj Akademii Nauk, 57:51–90, 1993. In Russian.Google Scholar
  59. Vol96a.
    H. Vollmer. Relations among parallel and sequential computation models. In Proceedings 2nd Asian Computing Science Conference, volume 1179 of Lecture Notes in Computer Science, pages 23–32. Springer Verlag, 1996.Google Scholar
  60. Vol96b.
    H. Vollmer. Succinct inputs, Lindström quantifiers, and a general complexity theoretic operator concept. Technical Report 158, Institut für Informatik, Universität Würzburg, 1996.Google Scholar
  61. Vol97.
    H. Vollmer. Relating polynomial time to constant depth. Technical Report 179, Institut für Informatik, Universität Würzburg, 1997.Google Scholar
  62. VW97.
    H. Vollmer and K. W. Wagner. On operators of higher types. In Proceedings 12th Conference on Computational Complexity, pages 174–184. IEEE Computer Society Press, 1997.Google Scholar
  63. Wag86a.
    K. W. Wagner. The complexity of combinatorial problems with succinct input representation. Acta Informatica, 23:325–356, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  64. Wag86b.
    K. W. Wagner. Some observations on the connection between counting and recursion. Theoretical Computer Science, 47:131–147, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  65. Wra77.
    C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer Science, 3:23–33, 1977.zbMATHCrossRefMathSciNetGoogle Scholar
  66. Yao85.
    A. C. C. Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings 26th Foundations of Computer Science, pages 1–10. IEEE Computer Society Press, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Heribert Vollmer
    • 1
  1. 1.Theoretische InformatikUniversität WüurzburgWürzburgGermany

Personalised recommendations