Generalized Quantifiers in Logic Programs

  • Thomas Eiter
  • Georg Gottlob
  • Helmut Veith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1754)


Generalized quantifiers are an important concept in model-theoretic logic which has applications in different fields such as linguistics, philosophical logic and computer science. In this paper, we consider a novel application in the field of logic programming, which has been presented recently. The enhancement of logic programs by generalized quantifiers is a convenient tool for interfacing extra-logical functions and provides a natural framework for the definition of modular logic programs. We survey the expressive capability of syntactical classes of logic programs with generalized quantifiers over finite structures, and pay particular attention to modular logic programs. Moreover, we study the complexity of such programs. It appears that modular logic programming has the expressive power of second-order logic and captures the polynomial hierarchy, and different natural syntactical fragments capture the classes therein. The program complexity parallels the expressive power in the weak exponential hierarchy. Modular logic programming proves to be a rich formalism whose expressiveness and complexity can be controlled by efficiently recognizable syntactic restrictions.


Logic Program Logic Programming Stable Model Expressive Power Stable Model Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Aho and J. Ullman. Universality of Data Retrieval Languages. In Proceedings ACM Symposium on Principles of Programming Languages, pages 110–117, 1979.Google Scholar
  2. 2.
    K. Apt and N. Bol. Logic Programming and Negation: A Survey. Journal of Logic Programming, 19/20:9–71, 1994.CrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Badia, M. Gyssens, and D. V. Gucht. Query languages with generalized quantifiers. In R. Ramakrishnan, editor, Applications of Logic Databases, pages 235–258. Kluwer Academic Publishers, 1995.Google Scholar
  4. 4.
    C. Baral and M. Gelfond. Logic Programming and Knowledge Representation. Journal of Logic Programming, 19/20:73–148, 1994.CrossRefMathSciNetGoogle Scholar
  5. 5.
    J. Barwise. Some Applications of Henkin Quantifiers. Israel Journal of Mathematics, 25:47–63, 1976.zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    J. Barwise and R. Cooper. Generalized Quantifiers and Natural Language. Linguistic and Philosophy, 4:159–219, 1981.zbMATHCrossRefGoogle Scholar
  7. 7.
    J. Barwise and S. Feferman. Model-Theoretic Logics. Springer, 1985.Google Scholar
  8. 8.
    N. Bidoit. Negation in rule-based database systems: a survey. Theoretical Computer Science, 78:3–83, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Blass and Y. Gurevich. Henkin Quantifiers and Complete Problems. Annals of Pure and Applied Logic, 32:1–16, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Bugliesi, E. Lamma, and P. Mello. Modularity in Logic Programming. Journal of Logic Programming, 19/20:443–502, 1994.CrossRefMathSciNetGoogle Scholar
  11. 11.
    E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of Logic Programming. In Proceedings of the Twelth IEEE International Conference on Computational Complexity (CCC’ 97), pages 82–101, 1997.Google Scholar
  12. 12.
    A. Dawar, G. Gottlob, and L. Hella. Capturing Relativized Complexity Classes without Order. Mathematical Logic Quarterly, 15:109–122, 1998.CrossRefMathSciNetGoogle Scholar
  13. 13.
    H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Mathematical Logic. Springer, 1995.Google Scholar
  14. 14.
    T. Eiter and G. Gottlob. Expressiveness of Stable Model Semantics for Disjunctive Logic Programs with Functions. Journal of Logic Programming, 33(2):167–178, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions on Database Systems, 22(3):364–417, September 1997.CrossRefGoogle Scholar
  16. 16.
    T. Eiter, G. Gottlob, and H. Veith. Modular Logic Programming and Generalized Quantifiers. In J. Dix, U. Furbach, and A. Nerode, editors, Proceedings of the 4th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-97), number 1265 in LNCS, pages 290–309. Springer, 1997.Google Scholar
  17. 17.
    T. Eiter, G. Gottlob, and H. Veith. Modular Logic Programming and Generalized Quantifiers. Technical Report CD-TR 97/111, Christian Doppler Laboratory for Expert Systems, TU Vienna, January 1997. Preliminary Report.Google Scholar
  18. 18.
    H. Enderton. Finite Partially-Ordered Quantifiers. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 16:393–397, 1970.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    M. Fitting. Enumeration Operators and Modular Logic Programming. Journal of Logic Programming, 4:11–21, 1987.CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    M. Garey and D. S. Johnson. Computers and Intractability — A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, 1979.zbMATHGoogle Scholar
  21. 21.
    M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In Logic Programming: Proceedings Fifth Intl Conference and Symposium, pages 1070–1080, Cambridge, Mass., 1988. MIT Press.Google Scholar
  22. 22.
    G. Gottlob. Relativized Logspace and Generalized Quantifiers over Ordered Finite Structures. Journal of Symbolic Logic, 62(2):545–574, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    G. Gottlob, N. Leone, and H. Veith. Second-Order Logic and the Weak Exponential Hierarchies. In J. Wiedermann and P. Hajek, editors, Proceedings of the 20th Conference on Mathematical Foundations of Computer Science (MFCS’ 95), number 969 in Lecture Notes in Computer Science, pages 66–81, Prague, 1995.Google Scholar
  24. 24.
    G. Gottlob, N. Leone, and H. Veith. Succinctness as a Source of Complexity in Logical Formalisms. Annals of Pure and Applied Logic, 97:231–260, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    E. Grädel. Capturing Complexity Classes with Fragments of Second Order Logic. Theoretical Computer Science, 101:35–57, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    P. Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, 1998.Google Scholar
  27. 27.
    L. Henkin. Some Remarks on Infinitely Long Formulas. In In nitistic Methods, Proc. Symp. on Foundations of Mathematics, pages 167–183. Warsaw, Panstwowe Wydawnictwo Naukowe and Pergamon Press, 1961.Google Scholar
  28. 28.
    J. Hintikka. Quantifiers vs. Quantification Theory. Linguistic Inquiry, 5:153–177, 1974.Google Scholar
  29. 29.
    J. Hintikka. Quantifiers in Logic and Quantifiers in Natural Languages. In S. Körner, editor, Philosophy of Logic, chapter V. Univ. of California Press, Berkeley et al, 1976.Google Scholar
  30. 30.
    N. Immerman. Languages that Capture Complexity Classes. SIAM Journal of Computing, 16:760–778, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    N. Immerman. Descriptive Complexity. Springer, 1997.Google Scholar
  32. 32.
    D. S. Johnson. A Catalog of Complexity Classes. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume A, chapter 2. Elsevier Science Publishers B.V. (North-Holland), 1990.Google Scholar
  33. 33.
    M. Krynicky and J. Väänänen. Henkin and Function Quantifiers. Annals of Pure and Applied Logic, 43:273–292, 1989.CrossRefMathSciNetGoogle Scholar
  34. 34.
    P. Lindström. First Order Predicate Logic with Generalized Quantifiers. Theoria, 32:186–195, 1966.MathSciNetGoogle Scholar
  35. 35.
    J. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1984, 1987.zbMATHGoogle Scholar
  36. 36.
    J. Makowsky. Model Theory and Computer Science: An Appetizer. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer Science, volume I, chapter 6. Oxford University Press, 1992.Google Scholar
  37. 37.
    J. Makowsky. Capturing Relativized Complexity Classes with Lindström Quantifiers. In W. D. Pauli-Schimanovich, editor, The Foundational Debate, pages 133–140. Kluwer Academic Publishers, 1995.Google Scholar
  38. 38.
    J. Makowsky and Y. Pnueli. Oracles and Quantifiers. In Computer Science Logic 1993 (CSL’93), number 832 in LNCS, pages 189–222. Springer, 1994.CrossRefGoogle Scholar
  39. 39.
    J. Makowsky and Y. Pnueli. Computable Quantifiers and Logics over Finite Structures. In M. Krynicki, M. Mostowski, and L. Szczerba, editors, Quantifiers: Logics, Models and Computation, Volume I, pages 313–357. Kluwer Academic Publishers, 1995.Google Scholar
  40. 40.
    J. Makowsky and Y. Pnueli. Logics Capturing Relativized Complexity Classes Uniformly. In D. Leivant, editor, Proceedings LCC’94, Logic and Computational Complexity, number 960 in LNCS, pages 463–479. Springer, 1995.Google Scholar
  41. 41.
    J. Makowsky and Y. Pnueli. Arity and Alternation in Second-Order Logic. Annals of Pure and Applied Logic, 78:189–202, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    D. Miller. A Theory of Modules in Logic Programming. In Proceedings of the International Logic Programming Symposium (ILPS’ 86), pages 106–114. MIT Press, 1986.Google Scholar
  43. 43.
    R. Montague. In R. Thomasson, editor, Formal Philosophy: Selected Papers. Yale University Press, New Haven, Conn, 1974.Google Scholar
  44. 44.
    A. Mostowski. On a Generalization of Quantifiers. Fundamenta Mathematicae, 44:12–36, 1957.MathSciNetGoogle Scholar
  45. 45.
    R. O’Keefe. Towards an Algebra for Constructing Logic Programs. In Proceedings of the IEEE Symposium on Logic Programming, pages 152–160. IEEE CS Press, 1985.Google Scholar
  46. 46.
    C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.Google Scholar
  47. 47.
    S. Rao, A. Badia, and D. Van Gucht. Processing Queries Containing Generalized Quantifiers. Technical Report TR 428, Computer Science Department, Indiana University, 1996.Google Scholar
  48. 48.
    B. Russell. The Principles of Mathematics. George Allen and Unwin, London, 1903.zbMATHGoogle Scholar
  49. 49.
    D. Saccá. Deterministic and Nondeterministic Stable Model Semantics for Unbound DATALOG Queries. In Proceedings 5th Intl. Conference on Database Theory (ICDT-95), LNCS 893, pages 353–367, January 1995.Google Scholar
  50. 50.
    G. Sandu and J. Väänänen. Partially Ordered Connectives. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 38:361–372, 1992.zbMATHCrossRefGoogle Scholar
  51. 51.
    J. Schlipf. The Expressive Powers of Logic Programming Semantics. Journal of Computer and System Sciences, 51(1):64–86, 1995. Abstract in Proc. PODS 90, pp. 196–204.zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    J. Spivey. The Z Notation: A Reference Manual. Addison Wesley, Harlow, 1992.Google Scholar
  53. 53.
    I. Stewart. Logical Characterizations of Bounded Query Classes I: Logspace Oracle Machines. Fundamenta Informaticae, 18:65–92, 1993.zbMATHMathSciNetGoogle Scholar
  54. 54.
    I. Stewart. Logical Characterizations of Bounded Query Classes II: Polynomial-Time Oracle Machines. Fundamenta Informaticae, 18:93–105, 1993.zbMATHMathSciNetGoogle Scholar
  55. 55.
    I. Stewart. Incorporating generalized quantifiers and the least fixed point operator. In Proc. Computer Science Logic, number 832 in LNCS, pages 318–333, 1994.CrossRefGoogle Scholar
  56. 56.
    I. Stewart. Complete problems for monotone NP. Theoretical Computer Science, 145:147–157, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    I. Stewart. Logical Descriptions of monotone NP problems. Journal of Logic and Computation, 4:337–357, 1995.CrossRefGoogle Scholar
  58. 58.
    L. J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer Science, 3:1–22, 1977.zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    J. Väänänen. Generalized Quantifiers, an Introduction. This volume.Google Scholar
  60. 60.
    M. Vardi. Complexity of Relational Query Languages. In Proceedings 14th STOC, pages 137–146, San Francisco, 1982.Google Scholar
  61. 61.
    H. Veith. Succinct Representation, Leaf Languages, and Projection Reductions. Information and Computation, 142(2):207–236, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    H. Vollmer. A General Quantifier Concept in Computational Complexity Theory. This volume.Google Scholar
  63. 63.
    K. Wagner. Bounded Query Classes. SIAM Journal of Computing, 19(5):833–846, 1990.zbMATHCrossRefGoogle Scholar
  64. 64.
    W. Walkoe. Finite Partially-Ordered Quantification. Journal of Symbolic Logic, 35:535–555, 1970.zbMATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    J. Wordsworth. Software Engineering with B. Addison Wesley, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Thomas Eiter
    • 1
  • Georg Gottlob
    • 2
  • Helmut Veith
    • 2
    • 3
  1. 1.Institut für InformationssystemeAbteilung Wissensbasierte SystemeWienAustria
  2. 2.Institut für InformationssystemeAbteilung Datenbanken und AIWienAustria
  3. 3.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations