A Perspective on Lindström Quantifiers and Oracles

  • Iain A. Stewart
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1754)


This paper presents a perspective on the relationship between Lindström quantifiers in model theory and oracle computations in complexity theory. We do not study this relationship here in full generality (indeed, there is much more work to do in order to obtain a full appreciation), but instead we examine what amounts to a thread of research in this topic running from the motivating results, concerning logical characterizations of nondeterministic polynomial-time, to the consideration of Lindström quantifiers as oracles, and through to the study of some naturally arising questions (and subsequent answers). Our presentation follows the chronological progress of the thread and highlights some important techniques and results at the interface between finite model theory and computational complexity theory.


Encode Scheme Turing Machine Complexity Class Hamiltonian Path Oracle Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Allender, J. Balcázar and N. Immerman, A first-order isomorphism theorem, Lecture Notes in Computer Science Vol. 665 (1993) 163–174.Google Scholar
  2. 2.
    A. Blass and Y. Gurevich, Equivalence relations, invariants and normal forms, SIAM J. Comput. 13 (1984) 682–689.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Barwise, On Moschovakis closure ordinals, J. Symbolic Logic 42 (1997) 292–296.MathSciNetGoogle Scholar
  4. 4.
    J.F. Buss, Alternations and space-bounded computations, J. Comput. Systems Sci. 36 (1988) 351–378.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    E. Dahlhaus, Reduction to NP-complete problems by interpretations, Lecture Notes in Computer Science Vol. 171, Springer-Verlag (1984) 357–365.Google Scholar
  6. 6.
    A. Dawar, Generalized quantifiers and logical reducibilities, J. Logic Computat. 5 (1995) 213–226.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Dawar, G. Gottlob and L. Hella, Capturing relativized complexity classes without order, Mathematical Logic Quarterly, 44 (1998) 109–122.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Dawar and L. Hella, The expressive power of finitely many generalized quantifiers, Inform. and Computat. 123 (1995) 172–184.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    H.D. Ebbinghaus and J. Flum, Finite Model Theory, Springer-Verlag (1995).Google Scholar
  10. 10.
    R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, in: Complexity of Computation (ed. R.M. Karp), SIAM-AMS Proceedings 7 (1974) 43–73.Google Scholar
  11. 11.
    M.R. Garey and D.S. Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness, W.H. Freeman and Co. (1979).Google Scholar
  12. 12.
    Y.V. Glebskii, D.I. Kogan, M.I. Liogonki and V.A. Talanov, Range and degree of realizability of formulas in the restricted predicate calculus, Cybernetics 5 (1969) 142–154.CrossRefGoogle Scholar
  13. 13.
    E. Grädel, On logical descriptions of some concepts in structural complexity theory, Lecture Notes in Computer Science Vol. 440 (1990) 163–175.Google Scholar
  14. 14.
    E. Grädel, Capturing complexity classes by fragments of second-order logic, Theoret. Comput. Sci. 101 (1992) 35–57.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    G. Gottlob, Relativized logspace and generalized quantifiers over finite ordered structures, J. Symbolic Logic 62 (1997) 545–574.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    G. Gottlob, N. Leone and H. Veith, Second order logic and the weak exponential hierarchies, Lecture Notes in Computer Science Vol. 969, Springer-Verlag (1995) 66–81.Google Scholar
  17. 17.
    Y. Gurevich, Toward logic tailored for computational complexity, Lecture Notes in Mathematics Vol. 1104, Springer-Verlag (1984) 175–216.Google Scholar
  18. 18.
    Y. Gurevich, Logic and the challenge of computer science, in: Trends in Theoretical Computer Science (ed. E. Börger), Computer Science Press (1988) 1–57.Google Scholar
  19. 19.
    J. Hartmanis, N. Immerman and S. Mahaney, One-way log-tape reductions, Proc. 19th Symp. Foundations of Computer Science, IEEE Press (1978) 65–71.Google Scholar
  20. 20.
    N. Immerman, Relational queries computable in polynomial time, Inform. Control 68 (1986) 86–104.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    N. Immerman, Languages that capture complexity classes, SIAM J. Comput. 16 (1987) 760–778.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    N. Immerman, Nondeterministic space is closed under complementation, SIAM J. Comput. 17 (1988) 935–938.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    J. Köbler, U. Schöning and K.W. Wagner, The difference and the truth-table hierarchies for NP, RAIRO Inform. Theory 21 (1987) 419–435.zbMATHGoogle Scholar
  24. 24.
    P. Lindström, First order predicate logic with generalized quantifiers, Theoria 32 (1966) 186–195.MathSciNetGoogle Scholar
  25. 25.
    P. Lindström, On extensions of elementary logic, Theoria 35 (1969) 1–11.zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    J.A. Makowsky and Y.B. Pnueli, Oracles and quantifiers, Lecture Notes in Computer Science Vol. 832 (1994) 189–222.Google Scholar
  27. 27.
    J.A. Makowsky and Y. Pnueli, Logics capturing oracle complexity classes uniformly, Lecture Notes in Computer Science Vol.960 (1995) 463–479.Google Scholar
  28. 28.
    J.A. Makowsky and Y. Pnueli, Computable quantifiers and logics over finite structures, in: Quantifiers: Logics, Models and Computation, Volume 1 (ed. M. Krynicki et al.), Kluwer (1995) 313–357.Google Scholar
  29. 29.
    W. Savitch, Maze recognizing automata and nondeterministic tape complexity, J. Comput. System Sci. 7 (1973) 389–403.zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    I.A. Stewart, Comparing the expressibility of languages formed using NP-complete operators, J. Logic Computat. 1 (1991) 305–330.zbMATHCrossRefGoogle Scholar
  31. 31.
    I.A. Stewart, Using the Hamiltonian path operator to capture NP, J. Comput. System Sci. 45 (1992) 127–151.zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    I.A. Stewart, Logical characterizations of bounded query classes I: logspace oracle machines, Fund. Informat. 18 (1993) 65–92.zbMATHGoogle Scholar
  33. 33.
    I.A. Stewart, Logical characterizations of bounded query classes II: polynomialtime oracle machines, Fund. Informat. 18 (1993) 93–105.zbMATHGoogle Scholar
  34. 34.
    I.A. Stewart, Methods for proving completeness via logical reductions, Theoret. Comput. Sci. 118 (1993) 193–229.zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    I.A. Stewart, Logical description of monotone NP problems, J. Logic Computat. 4 (1994) 337–357.zbMATHCrossRefGoogle Scholar
  36. 36.
    L. Stockmeyer, The polynomial hierarchy, Theoret. Comput. Sci. 3 (1976) 1–22.CrossRefMathSciNetGoogle Scholar
  37. 37.
    R. Szelepcsényi, The method of forced enumeration for nondeterministic automata, Acta Informat. 26 (1988) 279–284.zbMATHCrossRefGoogle Scholar
  38. 38.
    B.A. Trakhtenbrot, Impossibility of an algorithm for the decision problem on finite classes, Doklady 70 (1950) 569–572.Google Scholar
  39. 39.
    M. Vardi, Complexity of relational query languages, Proc. 14th ACM Ann. Symp. on Theory of Computing (1982) 137–146.Google Scholar
  40. 40.
    K.W. Wagner, Bounded query classes, SIAM J. Comput. 19 (1990) 833–846.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Iain A. Stewart
    • 1
  1. 1.Department of Mathematics and Computer ScienceLeicester UniversityLeicesterUK

Personalised recommendations