Skip to main content

Duality and Hidden Symmetries in Gravitational Theories

  • Conference paper
  • First Online:
Einstein’s Field Equations and Their Physical Implications

Part of the book series: Lecture Notes in Physics ((LNP,volume 540))

Abstract

Duality is presently considered the key to the Holy Grail of String Theory— it is supposed to provide links between the five known different superstring theories in ten dimensions, hoped to be just different limits of one unique eleven dimensional theory [1]. The main role of duality is to relate two different regimes— e.g. one of weak and one of strong coupling— of these theories. In most cases duality is not a very precise concept, just because the strong coupling regime is a matter of speculation. This is rather different from the duality transformations in the gravitational theories considered in this work, which have a very precise meaning— not the least because we are dealing with classical field theories (compare, however, [2] and for a modest attempt to use duality symmetry in Quantum Gravity, see [3]). The historical example of all these dualities is the duality between electric and magnetic fields in electrodynamics, which, when expressed in terms of the field strength, is just an example of the mathematical notion of Hodge duality for differential forms. Actually, the source-free Maxwell equations are not only invariant under a discrete duality, but under a continous one-parameter group of duality rotations. It is this kind of transformations, which is the subject of this article. Whereas, in general, the electromagnetic duality rotations are an ‘on-shell’ symmetry, i.e. a symmetry of the equations of motion and not of the action, the situation changes,if one considers time-independent solutions. In this case also the magnetic field can be derived from a (pseudo) scalar potential and the duality rotations expressed in terms of scalar potentials become a bona fide "off-shell' symmetry of the "dimensionally reduced' three dimensional theory. This replacement of the vector potential by a scalar one has analogues in higher dimensions playing an important role in the construction of supergravity theories through the process of dimensional reduction. A typical example is the (pseudo) scalar "axion',obtained as the dual of a gauge field 2-form in 4 dimensions. This scalar axion combines nicely with another scalar,the dilaton to a doublet giving rise to an SL(2) group of non-linear duality transformations [4]. A particular element of this group,replacing the dilaton by its inverse,lies at the heart of string duality ("S- duality')[5],where the expectation value of the dilaton plays the role of a string coupling constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Korotkin, D. and Samtleben, H.: Class. Quantum Gravity 14 (1997) L151. Nicolai, H. and Samtleben, H.: Nucl. Phys. B533 (1998) 210.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Hollmann, H.: Phys. Lett. B388 (1996) 702, Breitenlohner, P., Hollmann, H. and Maison, D.: gr-qc/9804030

    ADS  MathSciNet  Google Scholar 

  3. Cremmer, E., Ferrara, S. and Scherk, J.: Phys. Lett. B74 (1978) 341

    ADS  Google Scholar 

  4. Font, A., Ibanez, L., Lüst, D. and Quevedo, F.: Phys. Lett. B249 (1990) 35.

    ADS  Google Scholar 

  5. Ehlers, J.:Konstruktion und Charakterisierungen von Lösungen der Einstein’schen Gravitationsgleichungen, Dissertation, Hamburg, 1957.

    Google Scholar 

  6. Neugebauer, G. and Kramer, D.: Ann. d. Physik 24 (1969) 62, Geroch, R.: J. Math. Phys. 12 (1971) 918.

    Article  ADS  MathSciNet  Google Scholar 

  7. Kinnersley, W.: J. Math. Phys. 14 (1973) 651.

    Article  ADS  MathSciNet  Google Scholar 

  8. Harrison, B.K.: J. Math. Phys. 9 (1968) 1744.

    Article  MATH  ADS  Google Scholar 

  9. Julia B. in:Superspace and Supergravity, ed. Hawking, S. and Rocek, M., Cambridge Univ. Press (1981).

    Google Scholar 

  10. Helgason, S.: Differential Geometry and Symmetric Spaces, Academic, New York, 1962. Kobayashi, S. and Nomizu, K.; Foundations of Differential Geometry, Interscience, New York, 1969.

    Google Scholar 

  11. Breitenlohner, P., Gibbons, G. and Maison, D.: Commun. Math. Phys. 120 (1988) 295.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. deWit, B. and Nicolai, H.: Nucl. Phys. B274 (1986) 363.

    Article  ADS  Google Scholar 

  13. Geroch, R.: J. Math. Phys. 13 (1972) 394.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Hoenselaers, C., Kinnersley, W. and Xanthopoulos, B.: J. Math. Phys. 20 (1979) 2530.

    Article  ADS  Google Scholar 

  15. Harrison, B.K.: Phys. Rev. Lett. 41 (1978) 1197.

    Article  ADS  MathSciNet  Google Scholar 

  16. Kramer, D. and Neugebauer, G.: Phys. Lett. A75 (1980) 259.

    ADS  MathSciNet  Google Scholar 

  17. Hauser, I. and Ernst, F.J.: J. Math. Phys. 22 (1981) 1051.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Belinskiî, V.A. and Zakharov, V.E.: JETP 75 (1978) 1955 and JETP 77 (1979)3.

    Google Scholar 

  19. Maison, D.: Phys. Rev. Lett. 41 (1978) 521.

    Article  ADS  MathSciNet  Google Scholar 

  20. Breitenlohner, P. and Maison, D.: Ann. Inst. Henri Poincarŕe 46 (1987) 215.

    MATH  MathSciNet  Google Scholar 

  21. Li, W., Hauser, I. and Ernst, F.J.: J. Math. Phys. 32 (1991) 723 Hauser, I. and Ernst, F.J.: gr-qc/9303021

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Nicolai, H.: Phys. Lett. B194 (1987) 402.

    ADS  MathSciNet  Google Scholar 

  23. Eells, J. Jr. and Sampson, J.H.: Am. J. Math. 86 (1964) 109, Eells, J. and Lemaire, L.: Bull. London Math. Soc. 10 (1978) 1.

    Article  MATH  MathSciNet  Google Scholar 

  24. Misner, C.W.: Phys. Rev. D18 (1978) 4510.

    ADS  MathSciNet  Google Scholar 

  25. Heusler, M.: Black hole uniqueness theorems. Cambridge Univ. Press, Cambridge, 1996.

    Book  MATH  Google Scholar 

  26. Mazur, P.O.:J. Phys. A15 (1982) 3173.

    Google Scholar 

  27. Breitenlohner, P. and Maison, D.: On Nonlinear ó-Models arising in (Super-) Gravity. gr-qc/9806002, to appear in Commun. Math. Phys.

    Google Scholar 

  28. Olive, D.: Nucl. Phys. Proc. Suppl. 45A (1996) 88; Nucl. Phys. Proc. Suppl.46 (1996) 1.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Cremmer, E. and Julia, B.: Nucl. Phys. B159 (1979) 141.

    Article  ADS  MathSciNet  Google Scholar 

  30. Wu, T.T. and Yang, C.N.: Phys. Rev. D12 (1975) 3845.

    ADS  MathSciNet  Google Scholar 

  31. Schwinger, J.: Science 165 (1969) 757.

    Article  ADS  Google Scholar 

  32. Zwanziger, D.: Phys. Rev. 176 (1968) 1489.

    Article  ADS  Google Scholar 

  33. Deser, S. and Teitelboim, C.: Phys. Rev. D13 (1976) 1592.

    ADS  MathSciNet  Google Scholar 

  34. Montonen, and Olive, D.: Phys. Lett. B72 (1977) 117.

    ADS  Google Scholar 

  35. Seiberg, N. and Witten, E.: Nucl. Phys. B426 (1994) 19.

    Article  ADS  MathSciNet  Google Scholar 

  36. Chruściel, P.T.: Class. Quantum Grav. 10 (1993) 2091.

    Article  ADS  MATH  Google Scholar 

  37. KaQluza, T.: Sitzungsber. Preuss. Akad. Wiss. (1921) 966.

    Google Scholar 

  38. Carter, B.: in Black Holes, B. De Witt and C. De Witt eds., Gordon and Breach, New York, 1973.

    Google Scholar 

  39. Kac, V.G.: Infinite Dimensional Lie algebras, Birkhäuser, Boston, 1984.

    Google Scholar 

  40. Novikov, S., Manakov, S.V., Pitaevskii, L.P. and Zakharov, V.E.: Theory of Solitons, Consultants Bureau, New York, 1984. Faddeev, L.D. and Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  41. Maison, D.: in Nonlinear evolution equations: integrability and spectral methods, eds. Degasperis, Fordy and Lakshamanan, Manchester University Press, 1990.

    Google Scholar 

  42. Kramer, D. and G. Neugebauer, G.: Commun. Math. Phys. 10 (1968) 132.

    Article  ADS  MathSciNet  Google Scholar 

  43. Ueno, K. and Nakamura, Y.:Phys. Lett. B117 (1982) 208.

    ADS  MathSciNet  Google Scholar 

  44. Cosgrove, C.M.: J. Math. Phys. 21 (1980) 2417.

    Article  ADS  MathSciNet  Google Scholar 

  45. Julia, B.: in Proceedings of the Johns Hopkins Workshop on Particle Theory, Baltimore, 1981.

    Google Scholar 

  46. Cartan, H. and Eilenberg, S.:Homological Algebra, Princeton Univ. Press, 1956.

    Google Scholar 

  47. Bičak, J. and Hoenselaers, C.: Phys. Rev. D31 (1985) 2476.

    ADS  Google Scholar 

  48. Hou, B.Y. and Li, W.: Lett. Math. Phys.13 (1987) 1.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. Julia, B. and Nicolai H.: Nucl. Phys. B482 (1996) 431.

    Article  ADS  MathSciNet  Google Scholar 

  50. Hawking, S.W. and Ellis, G.F.R.: The large scale structure of space-time. Cambridge University Press, 1973.

    Google Scholar 

  51. Lichnerowicz, A.: Théories Relativiste de la Gravitation et de l’ Électromagnétisme, Masson, Paris, 1955.

    Google Scholar 

  52. Simon, W.: J. Math. Phys. 25 (1984) 1038.

    Article  ADS  Google Scholar 

  53. Chruściel, P.T.: Commun. Math. Phys. 189 (1997) 1.

    Article  ADS  MATH  Google Scholar 

  54. Sudarsky, D. and Wald, R.M.: Phys. Rev. D46 (1992) 1453.

    ADS  MathSciNet  Google Scholar 

  55. Dobiasch, P. and Maison, D.: Gen. Rel. Grav. 14 (1981) 231.

    Article  ADS  MathSciNet  Google Scholar 

  56. Israel, W.: Phys. Rev. 164 (1967) 1776.

    Article  ADS  Google Scholar 

  57. Hawking, S.W.: Commun. Math. Phys. 25 (1972) 152.

    Article  ADS  MathSciNet  Google Scholar 

  58. Chruściel, P.T. and Wald, R.M.: Class. Quantum Grav. 11 (1994) L147.

    Article  Google Scholar 

  59. Heusler, M.: Phys. Rev. D56 (1997) 961.

    ADS  MathSciNet  Google Scholar 

  60. Robinson, D.C.: Gen. Rel. Grav. 8 (1977) 695.

    Article  MATH  ADS  Google Scholar 

  61. Bunting, G.L. and Masood-Ul-Alaam, A.K.M.: Gen. Rel. Grav. 19 (1987) 147.

    Article  MATH  ADS  Google Scholar 

  62. Israel, W.: Commun. Math. Phys. 8 (1968) 245.

    Article  ADS  MathSciNet  Google Scholar 

  63. Papapetrou, A.:Proc. Roy. Irish Acad. A51 (1947) 191; S.D. Majumdar, S.D.: Phys. Rev. 72 (1947) 390.

    Google Scholar 

  64. Chruściel, P.T. and Nadirashvili, N.S.: Class. Quant. Grav. 12 L17 (1995) 12.

    Google Scholar 

  65. Bunting, G: Proof of the uniqueness conjecture for black holes, PHD thesis, Dept. of Math., University of New England, Armidale N.S.W., 1983.

    Google Scholar 

  66. Maison, D: in Non-linear Equations in Classical and Quantum Field Theory, N. Sanchez ed., Springer, Berlin, 1985.

    Google Scholar 

  67. Simon, W.: Gen. Rel. Grav. 17 (1985) 761.

    Article  ADS  Google Scholar 

  68. Robinson, D.C.: Phys. Rev. Lett. 34 (1975) 905.

    Article  ADS  Google Scholar 

  69. Mazur, P.: Phys. Lett. A100 (1984) 341.

    ADS  MathSciNet  Google Scholar 

  70. Eichenherr, H. and Forger, M.: Nucl. Phys. B155 (1979) 382.

    ADS  MathSciNet  Google Scholar 

  71. Gilmore, R.: Lie Groups, Lie Algebras and their Applications. Wiley, New York, 1974.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maison, D. (1999). Duality and Hidden Symmetries in Gravitational Theories. In: Schmidt, B.G. (eds) Einstein’s Field Equations and Their Physical Implications. Lecture Notes in Physics, vol 540. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46580-4_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-46580-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67073-5

  • Online ISBN: 978-3-540-46580-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics