Skip to main content

Noncommutative Geometry and Basic Physics

  • Conference paper
  • First Online:
Geometry and Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 543))

Abstract

Alain Connes’ noncommutative geometry, started in 1982 [0], widely develo- ped in 1994 as expounded in his book at this date [0] (it has grown meanwhile) is a systematic quantization of mathematics parallel to the quantization of physics effected in the twenties.This theory widens the scope of mathematics in a manner congenial to physics, reorganizes the existing (“classical”) mathematics of which it produces an hitherto unsuspected unification, and provides basic physics (the synthesis of elementary particles and gravitation) with a programme of renewal which has thus far achieved a clarification of the classical (tree-level) aspects of a new synthesis of the (Euclidean) standard model with gravitation [32],[33]: this is the subject of the present lectures— with the inherent tentative prediction of the Higgs mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A. Connes, Noncommutative Geometry. Academic Press, (1994)

    Google Scholar 

  2. A. Connes, Spectral sequence and homology of currents for operator algebras. Math. Forschungsinst.. Oberwolfach, Tagungsbericht 42181; Funktionalanalysis C—Algebren, 27/-3/10 (1981)

    Google Scholar 

  3. A. Connes, Essay on physics and non-commutative geometry. The Interface of Mathematics and Particle Physics. Clarendon Press, Oxford,1990

    Google Scholar 

  4. A. Connes and J. Lott, Particle models and noncommutative geometry. Nucl. Phys. B 18(1990), suppl,29–47(1991)

    MathSciNet  Google Scholar 

  5. A. Connes and J. Lott, The metric aspect of noncommutative geometry. Proceedings of the July 1991 Cargèse school of Theoretical Physics.

    Google Scholar 

  6. D. Kastler and T. Schücker, Remarks on Alain Connes’ approach to the standard model in noncommutative geometry. Theoret. Math. Phys. 92 (1992) 523

    Article  Google Scholar 

  7. J.C. Varilly and J.M. Gracia-Bonda, Connes’ noncommutative differential geometry and the Standard Model. J. Geom. Phys 12 (1992) 223

    Article  ADS  Google Scholar 

  8. D. Kastler, Towards extracting physical predictions from Alain Connes’ version of the standard model (the new grand unification?).Istanbul workshop Operator algebras, Mathematical physics and Low dimensional topology, A.K. Peters (1993).

    Google Scholar 

  9. D. Kastler and D. Testard, Quantum forms of tensor products. Comm.Math.Phys.155 (1993)135

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. A. Connes, Noncommutative geometry and physics. Proceedings of 1992 Les Houches school of Theoretical Physics, North Holland (1995)

    Google Scholar 

  11. B. Iochum, D. Kastler and T. Schücker, Fuzzy mass relations for the Higgs. J. Math. Phys. 36 (1995) 232

    Article  Google Scholar 

  12. E. Alvarez, J. Garcia-Bondia and C.P. Martin, Anomaly cancellation and the gauge group of the standard model in noncommutative geometry. Phys.Lett. B364 (1995) 33

    ADS  Google Scholar 

  13. J.M. Gracia-Bondia, Connes’ interpretation of the Standard Model and massive neutrinos. Phys. Lett. B 351 (1995) 510

    ADS  MathSciNet  Google Scholar 

  14. A. Connes, Noncommutative geometry and reality. J. Math. Phys. 36 (1995) 6194

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. M. Takesaki, Tomita’s theory of modular Hilbert algebras and its applications. Lecture Notes in Math. 128 (Springer 1970)

    Google Scholar 

  16. D. Kastler, KMS in nutshell.Enlarged Proceedings of the ISI GUCCIA Workshop on quantum groups, noncommutative geometry and fundamental physical interactions, December 1997. (Nova Science Publishers, Inc., Commack, New York)

    Google Scholar 

  17. M.F. Atiyah, K-theory and reality. Quart. J. Math. Oxford (2) 17 (1966) 367

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. D. Kastler, A detailed account of Alain Connes’ version of the standard model in noncommutative differential geometry. III Rev. Math. Phys. 8 (1996) 103

    Article  MATH  MathSciNet  Google Scholar 

  19. B. Iochum and T. Schücker, Yang-Mills-Higgs versus Connes-Lott. Comm. Math. Phys. 178 (1996) 1

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. R. Asquith, Noncommutative geometry and the strong force. Phys. Lett. B 366 (1996) 220

    ADS  MathSciNet  Google Scholar 

  21. D. Kastler and T. Schücker, A detailed account of Alain Connes’ version of the standard model in noncommutative differential geometry. IV Rev. Math. Phys. 8 (1996) 205

    Article  MATH  Google Scholar 

  22. D. Kastler, Dual pairs of quantum spaces. Lett. Math. Phys. 37 (1996) 329

    MATH  MathSciNet  ADS  Google Scholar 

  23. A. Connes, Brisure de symmétrie spontanée et géométrie du point de vue spectral. Exposé Bourbaki 816 (1995-96)

    Google Scholar 

  24. D. Kastler and T. Schücker, The standard model a la Connes-Lott. J. Geom. Phys. 388 (1996) 1

    Google Scholar 

  25. J.M. Gracia-Bondia, J.C. Varilly and C.P. Martin, The Standard Model as a noncommutative geometry: the low mass regime. Phys. Rep.

    Google Scholar 

  26. B. Iochum, D. Kastler and T. Schücker, Standard model and fuzzy mass relations. “Geometry and nature”, Contemp. Math. 203 (1997) 175 (H. Nencka and J.P. Bourguignon eds)

    Google Scholar 

  27. L. Carminati, B. Iochum, D. Kastler and T. Schücker, The noncommutative constraints on the standard model à la Connes. J. Math. Phys. 38 (1997) 1269

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. L. Carminati, B. Iochum, D. Kastler and T. Schücker, Noncommutative Yang-Mills and noncommutative relativity. A bridge over troubled water. Preprint hep-th/9706105

    Google Scholar 

  29. T. Krajewski, Classification of finite spectral triples. ( to appear in J. Geom. and Phys.)

    Google Scholar 

  30. M. Paschke and A. Sitarz, Discrete spectral triples and their symmetries. Preprint q-alg/9612029

    Google Scholar 

  31. D. Kastler, The Dirac operator and gravitation. Comm.Math.Phys. 166 (1995) 633

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. W. Kalau and M. Walze, Gravity, noncommutative geometry and the Wodzicki reside. J.Geom.Phys. 16 (1995) 327

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. J. Madore, Noncommutative geometry and its physical applications. London. Math. Soc. Lecture Note Series 206. (Cambridge University press 1995)

    Google Scholar 

  34. A. Connes, Gravity coupled with matter and the foundation of noncommutative geometry. Comm.Math.Phys. 117 (1996) 673

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Chamseddine and A. Connes, The spectral action principle. Comm. Math. Phys. 186 (1996) 731

    Article  ADS  MathSciNet  Google Scholar 

  36. R. Brout, Notes on Connes construction of the standard model. Preprint hep-th/9706200 (Bruxelles 1996)

    Google Scholar 

  37. B. Iochum, D. Kastler and T. Schücker, On the universal Chamseddine-Connes action. J. Math. Phys. 38 (1997) 10

    Article  Google Scholar 

  38. L. Carminati, B. Iochum, D. Kastler and T. Schücker, On Connes new principle of general relativity: can spinors hear the forces of space-time? Operator algebras and quantum field theory. S. Doplicher at al. eds. (International Press 1997)

    Google Scholar 

  39. P. Gilkey, Invariance theory, that heat equation and the Atiyah-Singer index theorem. ( CCr Press 1995)

    Google Scholar 

  40. T. Schücker, Geometry and forces. Lecture notes, School on noncommutative geometry. Monsaraz, Portugal, Sept., 1997

    Google Scholar 

  41. D. Kastler, Noncommutative geometry and fundamental physical interactions. School on noncommutative geometry. Monsaraz, Portugal, Sept., 1997

    Google Scholar 

  42. G. Landi and C. Rovelli, General relativity in terms of Dirac eigenvalues. Phys. Rev. Lett. 3051 (1997)

    Google Scholar 

  43. G. Landi, An introduction to noncommutative spaces and their geometries Springer-Verlag Berlin, Heidelberg 1997

    MATH  Google Scholar 

  44. A. Yu. Alekseev, D.V. Glushenkov and A.V. Lyakovskaya, Regular representation of the quantum group slq(2) (q is a root of unit). St. Petersburg Math. J. 6 5 (1994) 969

    Google Scholar 

  45. D. Kastler, Notes on Slq(2). Enlarged Proceeding of the ISI GUCCIA Workshop on quantum groups, noncommutative geometry and fundamental physical interactions, December 1997. (Nova Science Publishers, Inc., Commack, New York)

    Google Scholar 

  46. L. Dabrowski, P.M. Hajac and P. Siniscalco, Explicit Hopf-Galois description of SLexp(2iπ/3)(2)-induced Frobenius homomorphisms. Enlarged Proceeding of the ISI GUCCIA Workshop on quantum groups, noncommutative geometry and fundamental physical interactions, December 1997 (Nova Science Publishers, Inc., Commack, New York)

    Google Scholar 

  47. L. Dabrowski, F. Nesti and P. Siniscalco, A finite quantum symmetry of M3(3,CI). SISSA 63/97/FM (1997)

    Google Scholar 

  48. A. Connes, D. Kreimer, Hopf algebras, renormalization and noncommutative geometry. Quantum field theory/Perspective and Prospective. C. DeWitt-Morette, J.B. Zuber eds. Kluwer (1999)

    Google Scholar 

  49. T. Krajewski and R. Wulkenhaar, On Kreimer’s Hopf algebra structure of Feynman graphs. CPT-98/P.3639. hep-th/9805098, Eur.Phys.J.C 7 (1999) 697

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kastler, D. (2000). Noncommutative Geometry and Basic Physics. In: Gausterer, H., Pittner, L., Grosse, H. (eds) Geometry and Quantum Physics. Lecture Notes in Physics, vol 543. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46552-9_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-46552-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67112-1

  • Online ISBN: 978-3-540-46552-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics