Skip to main content

Thermal fluctuations of small vesicles: observation by dynamic light scattering

  • Conference paper
  • First Online:
Trends in Colloid and Interface Science XIV

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 115))

Abstract

The laser light scattering technique can be used in a nonconventional fashion to study dynamic properties of vesicles which are too small to be observed by microscopy. In fact, in suitable experimental conditions, the correlation function of the scattered light contains a contribution from bilayer fluctuations, besides the usual diffusion one. Characteristic fluctuation times have been determined for single-component phospholipid vesicles of 60 nm radius, prepared by extrusion. The addition of small amounts of a glycolipid (to 2% mole fraction), induces a significative increase in the fluctuation times (of the order of 20%) but still does not affect the diffusive motion, indicating a softening of the membrane. Being so sensitive, this technique is quite promising both for the study of membrane properties in the presence of defects and for applications to biology and pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evans E, Rawicz W (1997) Phys Rev Lett 79:2379

    Article  CAS  Google Scholar 

  2. Needham D, Zhelev DV (1996) In: Rosoff M (ed) Vesicles. Dekker, New York, pp 373–444

    Google Scholar 

  3. Vinckier A, Semenza G (1998) FEBS Lett 430:12

    Article  CAS  Google Scholar 

  4. Niggemann G, Kummrow M, Helfrich W (1995) J Phys II 5:413

    Article  CAS  Google Scholar 

  5. Kummrow M, Helfrich W (1991) Phys Rev E 44:8356

    CAS  Google Scholar 

  6. Schneider MB, Jenkins JT, Webb WW (1984) J Phys 45:1457

    CAS  Google Scholar 

  7. Evans E, Rawicz W (1990) Phys Rev Lett 64:2094

    Article  CAS  Google Scholar 

  8. Méléard P, Mitov MD, Faucon JF, Bothorel P (1990) Europhys Lett 11:355

    Article  Google Scholar 

  9. Mutz M, Helfrich W (1990) J Phys 51:991

    CAS  Google Scholar 

  10. Dobereiner HG, Evans E, Kraus M, Seifert U, Wortis M (1997) Phys Rev E 55:4458

    Article  Google Scholar 

  11. Farago B, Richter D, Huang JS, Safran SA, Milner ST (1990) Phys Rev Lett 65:3348

    Article  CAS  Google Scholar 

  12. Gradzielski M, Langevin D, Farago B (1996) Phys Rev E 53:3900

    Article  CAS  Google Scholar 

  13. Farago B (1996) Physica B 226:51

    Article  CAS  Google Scholar 

  14. Van Zanten JH (1996) In: Rosoff M (ed) Vesicles. Dekker, New York, pp 239–295

    Google Scholar 

  15. Joannic R, Auvray L, Lasic D (1997) Phys Rev Lett 78:3402

    Article  CAS  Google Scholar 

  16. Ferraretto A, Pitto M, Palestini P, Masserini M (1997) Biochemistry 36:9232

    Article  CAS  Google Scholar 

  17. Loughrey HC, Ferraretto A, Cannon AM, Acerbis G, Sudati F, Bottiroli G, Masserini M, Soria MR (1993) FEBS Lett 332:183

    Article  CAS  Google Scholar 

  18. Hope MJ, Bally MB, Webb G, Cullis PR (1985) Biochim Biophys Acta 812: 55

    Article  CAS  Google Scholar 

  19. Tettamanti G, Bonali F, Marchesini S, Zambotti V (1973) Biochim Biophys Acta 296:160

    CAS  Google Scholar 

  20. Lewis RN, Mak N, McElhaney RN (1987) Biochemistry 26:6118

    Article  CAS  Google Scholar 

  21. Stewart JCM (1980) Anal Biochem 104:10

    Article  CAS  Google Scholar 

  22. Corti M (1985) In: Degiorgio V, Corti M (eds) Physics of amphiphiles: micelles, vesicles and microemulsions. North-Holland, Amsterdam, pp 122–151

    Google Scholar 

  23. Milner ST, Safran S (1987) Phys Rev A 36:4371

    Article  CAS  Google Scholar 

  24. Cantù L, Corti M, Lago P, Musolino M (1991) Photon correlation spectroscopy: multicomponent systems. SPIE 1430:144

    Article  Google Scholar 

  25. Cantù L, Corti M, Del Favero E, Raudino A (1994) J Phys 4:1585

    Article  Google Scholar 

  26. Cantù L, Corti M, Del Favero E, Dubois M, Zemb T (1998) J Phys Chem B 102:5737

    Article  Google Scholar 

  27. Helfrich W (1973) Z Naturforsch 28:693

    CAS  Google Scholar 

  28. Helfrich W (1990) In: Charvolin J, Joanny JF, Zinn-Justin J (eds) Liquids at interfaces. Elsevier Science, Amsterdam, pp 33

    Google Scholar 

  29. Faucon JF, Mitov MD, Méléard P, Bivas I, Bothorel P (1989) J Physique 50:2389

    Article  Google Scholar 

  30. Komura S (1996) In: Rosoff M (ed) Vesicles. Dekker, New York, pp 197–236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this paper

Cite this paper

Brocca, P., Cantù, L., Corti, M., Del Favero, E. (2000). Thermal fluctuations of small vesicles: observation by dynamic light scattering. In: Buckin, V. (eds) Trends in Colloid and Interface Science XIV. Progress in Colloid and Polymer Science, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46545-6_37

Download citation

  • DOI: https://doi.org/10.1007/3-540-46545-6_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67128-2

  • Online ISBN: 978-3-540-46545-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics