Oxygen Isotope Effects in the Manganates and Cuprates Studied by Electron Paramagnetic Resonance

  • A. Shengelaya
  • Guo-meng Zhao
  • K. Conder
  • H. Keller
  • K. A. Müller
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 545)


We present the results of the oxygen isotope effect study in colossal magnetoresistive manganate La1−x Ca x MnO3+y, using electron paramagnetic resonance (EPR). We observed strong isotope effects on EPR intensity and linewidth which can be explained by a model where a bottlenecked spin relaxation takes place from the exchange-coupled constituent Mn4+ ions via the Mn3+ Jahn-Teller ions to the lattice. For x = 0.2 the ferromagnetic exchange energy J exhibits a16O/18O oxygen isotope effect of ~ -10%. The observed isotope effects suggest the presence of Jahn-Teller polarons in these materials.

We also report the results of the similar study in cuprate superconductors La2-x SrxCuO4. Experiments showed large oxygen isotope effect on EPR linewidth. It was found that isotope effect is strong in samples with small Sr doping and decreases with Sr concentration increase. These results provide the first microscopic evidence for the polaronic charge carriers in the cuprate superconductors.


Oxygen Isotope Cuprate Superconductor Double Exchange Model Oxygen Isotope Effect Strong Isotope Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Höck K.-H., Nickisch H., Thomas H. (1983) Helv phys Acta 50:237Google Scholar
  2. 2.
    Alexandrov A.S., Mott N.F. (1994) Int J Mod Phys 8:2075–2109CrossRefADSGoogle Scholar
  3. 3.
    Chahara K., Ohno T., Kassai M., Kozono Y. (1993) Appl Phys Lett 63:1990CrossRefADSGoogle Scholar
  4. 4.
    Zener C. (1951) Phys Rev 82:403; DeGennes P.G. (1960) Phys Rev 118:141CrossRefADSGoogle Scholar
  5. 5.
    Millis A.J., Littlewood P.B., Shairman B.I. (1995) Phys Rev Lett 75:5144CrossRefADSGoogle Scholar
  6. 6.
    Röder H., Zang Jun, Bishop A.R. (1996) Phys Rev Lett 76:1356CrossRefADSGoogle Scholar
  7. 7.
    Jahn H.A., Teller E. (1937) Proc Roy Soc (Lond) A 161:220zbMATHADSCrossRefGoogle Scholar
  8. 8.
    Guo-meng Zhao, Conder K., Keller H., Müller K.A., (1996) Nature (Lond) 381:676CrossRefADSGoogle Scholar
  9. 9.
    Müller K.A. (1959) Phys Rev Lett 2:341CrossRefADSGoogle Scholar
  10. 10.
    Abragam A., Bleaney B. (1970) Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, OxfordGoogle Scholar
  11. 11.
    Barnes S.E. (1981) Adv Phys 30:801CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Shengelaya A., Zhao Guo-meng, Keller H., Müller K.A. (1996) Phys Rev Lett 77:5296CrossRefADSGoogle Scholar
  13. 13.
    Bednorz J.G., Müller K.A. (1986) Z Phys B 64:189CrossRefADSGoogle Scholar
  14. 14.
    Mihailovic D., Ruani G., Kaldis E., Müller K.A. (Eds) (1994) Proc. Int. Workshop on Anharmonic Properties of High-Tc Cuprates, World Sci., SingaporeGoogle Scholar
  15. 15.
    Zhao Guo-meng, Hunt M.B., Keller H., Müller K.A., (1997) Nature (Lond) 385:236CrossRefADSGoogle Scholar
  16. 16.
    Mihailovic D., Mertelj T., Müller K.A. (1998) Phys Rev B 57:6116CrossRefADSGoogle Scholar
  17. 17.
    Kochelaev B.I., Kan L., Elschner B., Elschner S., (1994) Phys Rev B 49:13106CrossRefADSGoogle Scholar
  18. 18.
    Pranck J.P. (1994) In: Ginsberg D.M. (Ed) Physical Properties of High Temperature Superconductors IV, World Sci., SingaporeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • A. Shengelaya
    • 1
  • Guo-meng Zhao
    • 1
  • K. Conder
    • 2
  • H. Keller
    • 1
  • K. A. Müller
    • 1
  1. 1.Physik-Institut der Universität ZurichZürichSwitzerland
  2. 2.Laboratorium für FestkörperphysikETH ZürichZürichSwitzerland

Personalised recommendations