High Pressure Crystal Growth and Properties of Hg-Based Superconductors and One-Dimensional A1−x;CuO2 (A = Sr, Ca, Ba) Cuprates

  • J. Karpiński
  • G. I. Meijer
  • H. Schwer
  • R. Moliński
  • E. Kopnin
  • M. Angst
  • A. Wiśniewski
  • R. Puźniak
  • J. Hofer
  • C. Rossel
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 545)


High gas pressure up to llkbar has been applied for the synthesis of cuprates. Both single crystals and polycrystalline samples of Hg-based superconductors and quasi-one-dimensional A1−x CuO2 (A =Sr,Ca, Ba) compounds have been obtained. The influence of substitutions and oxygen content on the magnetic flux-pinning properties of single crystals of Hg-based superconductors has been investigated. The irreversibility field of almost optimally doped, unsubsti-tuted HgBa2Ca2Cu3O8+δ crystal (Tc = 130 K) is about two-three times larger than the one of underdoped crystal (Tc = 120 K). As a result of Re substitution for Hg a significant improvement of the irreversibility line position for a Hgo.77Re0.23Ba2Ca2Cu3O8+δ crystal is observed only at low temperatures (below 80 K). Neutron irradiation of HgBa2Ca2Cu3O8+δ crystal enhances the flux pinning, while also leading to a decrease of the effective mass anisotropy. The magnetic properties of infinite-chain cuprates Cao.83CuO2, Sr0.73CuO2 and Bao.66CuO2 have been studied. Susceptibility measurements give some evidence for a singlet ground state. However, all these compounds order antiferromagnetically at T < 10 K. Specific heat, elastic neutron scattering of polycrystalline material and magnetic torque on single crystals have been measured. These measurements give clear evidence that the AF ordered state is of long-range 3D character.


CuO2 Plane Singlet Ground State Magnetic Torque Irreversibility Line Irreversibility Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwer H., Kopnin E.M., Jun J., Karpiński J. (1997) J Solid State Chem 134:427–430CrossRefADSGoogle Scholar
  2. 2.
    Kopnin E.M., Schwer H., Jun J., Meijer G.I., Moliński R., Conder K., Karpiński J. (1997) Physica C 282–287:483–484CrossRefGoogle Scholar
  3. 3.
    Karpiński J., Schwer H., Kopnin E., Moliński R., Meijer G.I., Conder K. (1997) Physica C 282–287:77–80CrossRefGoogle Scholar
  4. 4.
    Karpiński J., Schwer H., Moliński R., Meijer G.I., Conder K., Kopnin E., Lohle J., Rossel C, Zecli D., Hofer J., Wiśniewski A., Puźniak R. (1997) In: Narlikar A. (Ed.) Studies of High Temperature Superconductors vol. 24, Nova Sci. Publ., Commack, NY, 165Google Scholar
  5. 5.
    Karpiński J., Schwer H., Conder K., Lohle J., Moliński R., Morawski A., Rossel C, Zech D., Hofer J. (1996) In: Klamut J., et al. (Eds.) Recent Developments in High Temperature Superconductivity, Lecture Notes in Physics vol475, Springer, Berlin Heidelberg, 83–103Google Scholar
  6. 6.
    Karpiński J., Schwer H., Meijer G.I., Conder K., Kopnin E., Rossel C. (1997) Physica C 274:99–106CrossRefADSGoogle Scholar
  7. 7.
    Chmaissem O., Jorgensen J.D., Yamaura K., Hiroi Z., Takano M., Shimoyama J., Kishio M. (1996) Phys Rev B 53:14 667CrossRefGoogle Scholar
  8. 8.
    Puźniak R., Karpiński J., Wiśniewski A., Szymczak R., Angst M., Schwer H., Moliński R., Kopnin E. (1998) Physica C 309:161–169CrossRefADSGoogle Scholar
  9. 9.
    Wiśniewski A., Puźniak R., Karpiński J., Hofer J., Szymczak R., Baran M., Sauerzopf F.M., Moliński R., Thompson J.R. (1999) Phys Rev B to be publishedGoogle Scholar
  10. 10.
    Hofer J., Karpiński J., Willemin M., Meijer G.I., Kopnin E., Moliński R., Schwer H., Rossel C., Keller H. (1998) Physica C 297:103–110CrossRefADSGoogle Scholar
  11. 11.
    Schneider T., H.Keller H. (1993) Int J Mod Phys 8:487CrossRefADSGoogle Scholar
  12. 12.
    Angst M. (1998) Diploma Thesis, ETH ZürichGoogle Scholar
  13. 13.
    Bean C.P., Livingston J.D. (1964) Phys Rev Lett 12:14CrossRefADSGoogle Scholar
  14. 14.
    Burlachkov L., Geshkenbein V.B., Koshelev A.E., Larkin A.I., Vinokur V.M. (1994) Phys Rev B 50:16 770CrossRefGoogle Scholar
  15. 15.
    Kogan V.G., Fang M.M., Mitra S. (1988) Phys Rev B 38:11958CrossRefADSGoogle Scholar
  16. 16.
    Glazman L.I., Koshelev E.E. (1992) Phys Rev B 43:2835CrossRefADSGoogle Scholar
  17. 17.
    Bulaevskii L.N., Ledvij M., Kogan V.G. (1992) Phys Rev Lett 68:3773CrossRefADSGoogle Scholar
  18. 18.
    Houghton A., Pelcovits R.A., Sudbo A. (1989) Phys Rev B 40:6763CrossRefADSGoogle Scholar
  19. 19.
    Schwer H., Moliński R., Kopnin E., Meijer G.I., Karpiński J. (1999) J Solid State Chem 143:277–284CrossRefADSGoogle Scholar
  20. 20.
    Schwer H., Moliriski R., Kopnin E., Angst M., Karpiriski J. (1999) Physica C 311:49–57CrossRefADSGoogle Scholar
  21. 21.
    Oseroff S.B., Cheong S.-W., Aktas B., Hundley M.F., Fisk Z., Rupp L.W.,Jr. (1995) Phys Rev Lett 74:1450CrossRefADSGoogle Scholar
  22. 22.
    Meijer G.I., Rossel C, Kopnin E.M., Willemin M., Karpiriski J., Schwer H., Conder K., Wachter P., (1998) Europhys Lett 42:339CrossRefADSGoogle Scholar
  23. 23.
    Shengelaya A., Meijer G.I., Karpiriski J., Zhao G.-M., Schwer H., Kopnin E.M., Rossel C, Keller H., (1998) Phys Rev Lett 80:3626CrossRefADSGoogle Scholar
  24. 24.
    Meijer G.I., Rossel C, Henggeler W., Keller H., Fautli F., Karpiriski J., Schwer H., Kopnin E.M., Wachter P., Black R.C., Diederichs J. (1998) Phys Rev B 58:14452CrossRefADSGoogle Scholar
  25. 25.
    Tranquada J.M., Sternlieb B.J., Axe J.D., Nakamura Y., Uchida S. (1995) Nature 375:561CrossRefADSGoogle Scholar
  26. 26.
    Meijer G.I. et al. (1998) unpublished dataGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • J. Karpiński
    • 1
  • G. I. Meijer
    • 1
  • H. Schwer
    • 1
  • R. Moliński
    • 1
  • E. Kopnin
    • 1
  • M. Angst
    • 1
  • A. Wiśniewski
    • 2
  • R. Puźniak
    • 2
  • J. Hofer
    • 3
  • C. Rossel
    • 4
  1. 1.Laboratorium für Festkörperphysik d. ETHZürichSwitzerland
  2. 2.Institute of PhysicsPolish Academy of SciencesWarsawPoland
  3. 3.Physik Institut der Universität ZürichZürichSwitzerland
  4. 4.IBM Research DivisionRüschlikonSwitzerland

Personalised recommendations