Skip to main content

Penetration Depth in Pure and Zinc-Substituted La2−x Sr x CuO4

  • Conference paper
  • First Online:
Book cover New Developments in High Temperature Superconductivity

Part of the book series: Lecture Notes in Physics ((LNP,volume 545))

  • 343 Accesses

Abstract

In the paper we present measurements of the in-plane λab(T) (H ‖ c) and out-of-plane λ⊥(T) (Hc) penetration depths in La2−x Sr x Cu1-yZnyO4 for x = 0.08, 0.1, 0.125, 0.15, and 0.2, and for y = 0, 0.005, 0.01, and 0.02. The penetration depth was obtained from ac susceptibility measurements of powdered samples, immersed in wax and magnetically oriented in a static magnetic field of 10 T. For unsubstituted, underdoped samples (x < 0.15) penetration depth varies linearly with temperature for low temperature region. For the samples from the overdoped region (x > 0.15) the measured points can be fitted by the exponential function of temperature. Our results support the view that for underdoped samples we are dealing with Bose-Einstein condensation while for overdoped ones the superconductivity is BCS-like. Extrapolated to T = 0, penetration depth values may be described by the quadratic function of strontium concentration similarly as the T c(x) dependence. For zinc-doped, underdoped La1.85Sr0.15Cu1−yZnyO4 the temperature dependences of penetration depths can be described by power laws, but with exponents n varying linearly with substituent content. These exponents n increase at a rate of about 2.5 per at% of zinc substitution. We found that the penetration- depth anisotropy is dependent on substituent content in La1.85Sr0.15Cu1-y,Zny04, decreasing to a minimum at x ≃ 0.015 and increasing for higher substitutions and can be described by a quadratic function. Our results strongly suggest that both the effective mass and the density of charge carriers must be taken into account in theories describing high-temperature superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardeen J., Cooper L.N., Schriffer J.R. (1957) Phys Rev 108:1175

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Hoevers H.F.C., van Bentum P.J.M., van der Leemput L.E.C., van Kempen H., Schellingerhout A.J.G., van der Marel D. (1988) Physica C 152:105

    Article  ADS  Google Scholar 

  3. Fiory A.T., Hebard A.F., Mankiewich P.M., Howard R.E. (1988) Phys Rev Lett 61:1419

    Article  ADS  Google Scholar 

  4. Hardy W.N., Bonn D.A., Morgan D.C., Liang R., Zhang K. (1993) Phys Rev Lett 70:3999

    Article  ADS  Google Scholar 

  5. Klein N., Tellmann N., Schultz H., Urban K., Wolf S.A., Kresin V.Z. (1993) Phys Rev Lett 71:3355

    Article  ADS  Google Scholar 

  6. Anlage S., Langley B.W., Deutscher G., Halbritter J., Beasley M.R. (1991) Phys Rev B 44:9764

    Article  ADS  Google Scholar 

  7. Hammel P.C., Takigawa M., Heffner R.H., Fisk Z., Ott K.C. (1989) Phys Rev Lett 63:1992

    Article  ADS  Google Scholar 

  8. Ma Z., Taber R.C., Lombardo L.W., Kapitulnik A., Beasley M.R., Merchant P., Eom C.B., Hou S.Y., Phillips J.M. (1993) Phys Rev Lett 71:781

    Article  ADS  Google Scholar 

  9. Mesot J., Böttger G., Mutka H., Furrer A. (1998) Europhys Lett 44:498

    Article  ADS  Google Scholar 

  10. Momono N., Ido M. (1996) Physica C 264:311

    Article  ADS  Google Scholar 

  11. Zhao X., Sun X., Fan X., Wu W., Li X-G., Guo S., Zhao Z. (1998) Physica C 307:265

    Article  ADS  Google Scholar 

  12. Panagopoulos C, Cooper J.R., Xiang T., Peacock G.B., Gameson I., Edwards P.P. (1997) Phys Rev Lett 79:2320

    Article  ADS  Google Scholar 

  13. Mendels P., Alloul H., Brewer J.H., Morris G.D., Duty T.L., Johnston S., Ansaldo E.J., Collin G., Marucco J.F., Nidermayer C, Noakes D.R., Stronach C.E. (1994) Phys Rev B 49:10035

    Article  ADS  Google Scholar 

  14. Basov D.N., Liang R., Bonn D.A., Hardy W.N., Dabrowski B., Quijada M., Tanner D.B., Rice J.P., Ginsberg D.M., Timusk T. (1995) Phys Rev Lett 74:598

    Article  ADS  Google Scholar 

  15. Maeda A., Shibauchi T., Kondo N., Uchinokura K., Kobayashi M. (1992) Phys Rev B 46:14234

    Article  ADS  Google Scholar 

  16. Zhang K., Bonn D.A., Kamal S., Liang R., Baar D.J., Hardy W.N., Basov D., Timusk T. (1994) Phys Rev Lett 73:2484

    Article  ADS  Google Scholar 

  17. Basov D.N., Timusk T., Dabrowski B., Jorgensen J.D. (1994) Phys Rev B 50:3511

    Article  ADS  Google Scholar 

  18. Janossy B., Prost D., Pekker S., Fruchter L. (1991) Physica C 181:51

    Article  ADS  Google Scholar 

  19. Kossler W.J., Kempton J.R., Yu X.H., Schone H.E., Uemura Y.J., Moodenbaugh A.R., Suenaga M., Stronach C.E. (1987) Phys Rev B 35:7133

    Article  ADS  Google Scholar 

  20. Fiory A.T., Hebard A.F., Mankevich P.M., Howard R.E. (1988) Appl Phys Lett 52:2165

    Article  ADS  Google Scholar 

  21. de Vaulchier L.A., Vieren J.P., El Azrak A., Guldner Y., Bontemps N., Guilloux-Viry M., LePaven-Thivet C, Perrin A. (1995) Phys Rev B 52:564

    Article  ADS  Google Scholar 

  22. Pond J.M., Carrol K.R., Horwitz J.S., Chrisey D.B., Osovsky M.S., Cestone V.C. (1991) Appl Phys Lett 59:3033

    Article  ADS  Google Scholar 

  23. Farrell D.E., Chandrasekhar B.S., DeGuire M.R., Fang M.M., Kogan V.G., Clem J.R., Finnemore D.K. (1987) Phys Rev B 36:4025

    Article  ADS  Google Scholar 

  24. Cooper J.R., Chu C.T., Zhou L.W., Dunn B., Gröfner G. (1988) Phys Rev B 37:638

    Article  ADS  Google Scholar 

  25. Sok J., Xu M., Chen W., Suh B.J., Gohng J., Finnemore D.K., Kramer M.J., Schwartzkopf L.A., Dabrowski B. (1995) Phys Rev B 51:6035

    Article  ADS  Google Scholar 

  26. Sun A.G., Gajewski D.A., Maple M.B., Dynes R.C. (1994) Phys Rev Lett 72:2267

    Article  ADS  Google Scholar 

  27. Moser N., Koblischka M.R., Kronmueller H., Gegenheimer B., Theuss H. (1989) Physica C 159:117

    Article  ADS  Google Scholar 

  28. Oral A., Bending S.J., Humphreys R.G., Heinini M. (1997) Supercond Sci Technol 10:17

    Article  ADS  Google Scholar 

  29. Puri M., Kevan L. (1992) Physica C 197:53

    Article  ADS  Google Scholar 

  30. Nachumi B., Keren A., Kojima K., Larkin M., Luke G.M., Merrin J., Tchernyshov O., Uemura Y.J., Ichikawa N., Goto M., Uchida S. (1996) Phys Rev Lett 77:5421

    Article  ADS  Google Scholar 

  31. Luke G.M., Fudamoto Y., Kojima K.M., Larkin M., Merrin J., Nachumi B., Uemura Y.J., Sonier J.E., Ito T., Oka K., de Andrade M., Maple M.B., Uchida S. (1997) Physica C 282–287:1465

    Article  Google Scholar 

  32. Locquet J.-P., Jaccard Y., Cretton A., Williams E.J., Arrouy F., Machler E., Schneider T., Fisher Ø., Martinoli P. (1995) IBM Research Report RZ 2720, July 3rd

    Google Scholar 

  33. Uchida S., Tamasaku K., Tajima S. (1996) Phys Rev B 53:14558

    Article  ADS  Google Scholar 

  34. Shibauchi T., Kitano H., Uchinokura K., Maeda A., Kimura T., Kishio K. (1994) Phys Rev Lett 72:2263

    Article  ADS  Google Scholar 

  35. Pines D. (1994) In: Bedell K., Wang Z., Meltzer D.E., Valatzky A., Abrahams E. (Eds.) Strongly Correlated Electronic Materials: Los Alamos Symposium 1993, Addison-Wesley, Reading, MA

    Google Scholar 

  36. Olejniczak J., Zaleski A.J., Ciszek M. (1994) Mod Phys Lett B 8:185

    Article  ADS  Google Scholar 

  37. Porch A., Cooper J.R., Zheng D.N., Waldram J.R., Campbell A.M., Freeman P.A. (1993) Physica C 214:350

    Article  ADS  Google Scholar 

  38. Parr H. (1975) Phys Rev B 12:4886

    Article  ADS  Google Scholar 

  39. Imbert P., Jehanno G., Garciu C, Hodges J.A., Bahout-Moullem M. (1992) Physica C 190:316

    Article  ADS  Google Scholar 

  40. Radelli P.G., Hinks D.G., Wagner J.L., Dabrowski B., Vandervoort K.G., Viswanathan H.K., Jorgensen J.D. (1994) Phys Rev B 49:4163

    Article  ADS  Google Scholar 

  41. Chang J.-J., Scalapino D.J. (1989) Phys Rev B 40:4299

    Article  ADS  Google Scholar 

  42. Tarascon J.M., Greene L.H., Bagley B.G., McKinnon W.R., Barboux P., Hull G.W. (1987) In: Wolf S.A., Kresin V.Z. (Eds.) Novel Superconductivity, Plenum, New York, NY, 705

    Google Scholar 

  43. Fujishita H., Sato M. (1989) Solid State Commun 72:529

    Article  ADS  Google Scholar 

  44. Mirza K.A., Loram J.W., Cooper J.R. (1997) Physica C 282–287:1411

    Article  Google Scholar 

  45. Uemura Y.J. (1997) Physica C 282–287:194

    Article  Google Scholar 

  46. Tranquada J.M., Sternlieb B.J., Axe J.D., Nakamura Y., Uchida S. (1995) Nature 375:561

    Article  ADS  Google Scholar 

  47. Uemura Y.J., Keren A., Le L.P., Luke G.M., Wu W.D., Kubo Y., Manako T., Shimakawa Y., Subramanian M., Cobb J.L., Markert J.T. (1993) Nature 364:605

    Article  ADS  Google Scholar 

  48. Kimura T., Kishio K., Kobayashi T., Nakayama Y., Motohira N., Kitazawa K., Yamafuji K. (1992) Physica C 192:247

    Article  ADS  Google Scholar 

  49. Müller A., Zhao G., Conder K., Keller H. (1998) J Phys Cond Matt 10:L291

    Article  Google Scholar 

  50. Uemura Y.J., Luke G.M., Sternlieb B.J., Brewer J.H., Carolan J.F., Hardy W.N., Kadono R., Kempton J.R., Kiefl R.F., Kreitzman S.R., Mulhern P., Riseman T.M., Williams D.L., Yang B.X., Uchida S., Takagi H., Gopalakrishnan J., Sleight A.W., Subramanian M.A., Chien C.L., Cieplak M.Z., Xiao Gang, Lee V.Y., Statt B.W., Stronach C.E., Kossler W.J., Yu X.H. (1989) Phys Rev Lett 62:2317

    Article  ADS  Google Scholar 

  51. Zaleski A.J., Klamut J. (1999) Phys Rev B 59:14023

    Article  ADS  Google Scholar 

  52. Johnston D.C. (1989) Phys Rev Lett 62:957

    Article  ADS  Google Scholar 

  53. Bonn D.A., Kamal S., Zhang K., Liang R., Baar D.J., Klein E., Hardy W.N. (1994) Phys Rev B 50:4051

    Article  ADS  Google Scholar 

  54. Xiao G., Cieplak M.Z., Xiao J.Q., Chien C.L. (1990) Phys Rev B 42:8752

    Article  ADS  Google Scholar 

  55. Sumner M.J., Kim J.-T., Lemberger T.R. (1993) Phys Rev B 47:12 248

    Article  Google Scholar 

  56. Xiang T., Wheatley J.M. (1996) Phys Rev Lett 77:4632

    Article  ADS  Google Scholar 

  57. Radtke R.J., Kostur V.N., Levin K. (1996) Phys Rev B 53:R522

    Article  ADS  Google Scholar 

  58. Leggett A.J. (1994) Physica B 199–200:291

    Article  Google Scholar 

  59. Stolbov S.V. (1997) J Phys Cond Matt 9:4691

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zaleski, A.J., Klamut, J. (2000). Penetration Depth in Pure and Zinc-Substituted La2−x Sr x CuO4 . In: Klamut, J., Veal, B.W., Dabrowski, B.M., Klamut, P.W., Kazimierski, M. (eds) New Developments in High Temperature Superconductivity. Lecture Notes in Physics, vol 545. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46511-1_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-46511-1_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67188-6

  • Online ISBN: 978-3-540-46511-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics