Penetration Depth in Pure and Zinc-Substituted La2−xSrxCuO4

  • A. J. Zaleski
  • J. Klamut
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 545)


In the paper we present measurements of the in-plane λab(T) (H ‖ c) and out-of-plane λ⊥(T) (Hc) penetration depths in La2−x Sr x Cu1-yZnyO4 for x = 0.08, 0.1, 0.125, 0.15, and 0.2, and for y = 0, 0.005, 0.01, and 0.02. The penetration depth was obtained from ac susceptibility measurements of powdered samples, immersed in wax and magnetically oriented in a static magnetic field of 10 T. For unsubstituted, underdoped samples (x < 0.15) penetration depth varies linearly with temperature for low temperature region. For the samples from the overdoped region (x > 0.15) the measured points can be fitted by the exponential function of temperature. Our results support the view that for underdoped samples we are dealing with Bose-Einstein condensation while for overdoped ones the superconductivity is BCS-like. Extrapolated to T = 0, penetration depth values may be described by the quadratic function of strontium concentration similarly as the T c(x) dependence. For zinc-doped, underdoped La1.85Sr0.15Cu1−yZnyO4 the temperature dependences of penetration depths can be described by power laws, but with exponents n varying linearly with substituent content. These exponents n increase at a rate of about 2.5 per at% of zinc substitution. We found that the penetration- depth anisotropy is dependent on substituent content in La1.85Sr0.15Cu1-y,Zny04, decreasing to a minimum at x ≃ 0.015 and increasing for higher substitutions and can be described by a quadratic function. Our results strongly suggest that both the effective mass and the density of charge carriers must be taken into account in theories describing high-temperature superconductivity.


Penetration Depth CuO2 Plane Strontium Content Swiss Cheese Underdoped Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bardeen J., Cooper L.N., Schriffer J.R. (1957) Phys Rev 108:1175zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Hoevers H.F.C., van Bentum P.J.M., van der Leemput L.E.C., van Kempen H., Schellingerhout A.J.G., van der Marel D. (1988) Physica C 152:105CrossRefADSGoogle Scholar
  3. 3.
    Fiory A.T., Hebard A.F., Mankiewich P.M., Howard R.E. (1988) Phys Rev Lett 61:1419CrossRefADSGoogle Scholar
  4. 4.
    Hardy W.N., Bonn D.A., Morgan D.C., Liang R., Zhang K. (1993) Phys Rev Lett 70:3999CrossRefADSGoogle Scholar
  5. 5.
    Klein N., Tellmann N., Schultz H., Urban K., Wolf S.A., Kresin V.Z. (1993) Phys Rev Lett 71:3355CrossRefADSGoogle Scholar
  6. 6.
    Anlage S., Langley B.W., Deutscher G., Halbritter J., Beasley M.R. (1991) Phys Rev B 44:9764CrossRefADSGoogle Scholar
  7. 7.
    Hammel P.C., Takigawa M., Heffner R.H., Fisk Z., Ott K.C. (1989) Phys Rev Lett 63:1992CrossRefADSGoogle Scholar
  8. 8.
    Ma Z., Taber R.C., Lombardo L.W., Kapitulnik A., Beasley M.R., Merchant P., Eom C.B., Hou S.Y., Phillips J.M. (1993) Phys Rev Lett 71:781CrossRefADSGoogle Scholar
  9. 9.
    Mesot J., Böttger G., Mutka H., Furrer A. (1998) Europhys Lett 44:498CrossRefADSGoogle Scholar
  10. 10.
    Momono N., Ido M. (1996) Physica C 264:311CrossRefADSGoogle Scholar
  11. 11.
    Zhao X., Sun X., Fan X., Wu W., Li X-G., Guo S., Zhao Z. (1998) Physica C 307:265CrossRefADSGoogle Scholar
  12. 12.
    Panagopoulos C, Cooper J.R., Xiang T., Peacock G.B., Gameson I., Edwards P.P. (1997) Phys Rev Lett 79:2320CrossRefADSGoogle Scholar
  13. 13.
    Mendels P., Alloul H., Brewer J.H., Morris G.D., Duty T.L., Johnston S., Ansaldo E.J., Collin G., Marucco J.F., Nidermayer C, Noakes D.R., Stronach C.E. (1994) Phys Rev B 49:10035CrossRefADSGoogle Scholar
  14. 14.
    Basov D.N., Liang R., Bonn D.A., Hardy W.N., Dabrowski B., Quijada M., Tanner D.B., Rice J.P., Ginsberg D.M., Timusk T. (1995) Phys Rev Lett 74:598CrossRefADSGoogle Scholar
  15. 15.
    Maeda A., Shibauchi T., Kondo N., Uchinokura K., Kobayashi M. (1992) Phys Rev B 46:14234CrossRefADSGoogle Scholar
  16. 16.
    Zhang K., Bonn D.A., Kamal S., Liang R., Baar D.J., Hardy W.N., Basov D., Timusk T. (1994) Phys Rev Lett 73:2484CrossRefADSGoogle Scholar
  17. 17.
    Basov D.N., Timusk T., Dabrowski B., Jorgensen J.D. (1994) Phys Rev B 50:3511CrossRefADSGoogle Scholar
  18. 18.
    Janossy B., Prost D., Pekker S., Fruchter L. (1991) Physica C 181:51CrossRefADSGoogle Scholar
  19. 19.
    Kossler W.J., Kempton J.R., Yu X.H., Schone H.E., Uemura Y.J., Moodenbaugh A.R., Suenaga M., Stronach C.E. (1987) Phys Rev B 35:7133CrossRefADSGoogle Scholar
  20. 20.
    Fiory A.T., Hebard A.F., Mankevich P.M., Howard R.E. (1988) Appl Phys Lett 52:2165CrossRefADSGoogle Scholar
  21. 21.
    de Vaulchier L.A., Vieren J.P., El Azrak A., Guldner Y., Bontemps N., Guilloux-Viry M., LePaven-Thivet C, Perrin A. (1995) Phys Rev B 52:564CrossRefADSGoogle Scholar
  22. 22.
    Pond J.M., Carrol K.R., Horwitz J.S., Chrisey D.B., Osovsky M.S., Cestone V.C. (1991) Appl Phys Lett 59:3033CrossRefADSGoogle Scholar
  23. 23.
    Farrell D.E., Chandrasekhar B.S., DeGuire M.R., Fang M.M., Kogan V.G., Clem J.R., Finnemore D.K. (1987) Phys Rev B 36:4025CrossRefADSGoogle Scholar
  24. 24.
    Cooper J.R., Chu C.T., Zhou L.W., Dunn B., Gröfner G. (1988) Phys Rev B 37:638CrossRefADSGoogle Scholar
  25. 25.
    Sok J., Xu M., Chen W., Suh B.J., Gohng J., Finnemore D.K., Kramer M.J., Schwartzkopf L.A., Dabrowski B. (1995) Phys Rev B 51:6035CrossRefADSGoogle Scholar
  26. 26.
    Sun A.G., Gajewski D.A., Maple M.B., Dynes R.C. (1994) Phys Rev Lett 72:2267CrossRefADSGoogle Scholar
  27. 27.
    Moser N., Koblischka M.R., Kronmueller H., Gegenheimer B., Theuss H. (1989) Physica C 159:117CrossRefADSGoogle Scholar
  28. 28.
    Oral A., Bending S.J., Humphreys R.G., Heinini M. (1997) Supercond Sci Technol 10:17CrossRefADSGoogle Scholar
  29. 29.
    Puri M., Kevan L. (1992) Physica C 197:53CrossRefADSGoogle Scholar
  30. 30.
    Nachumi B., Keren A., Kojima K., Larkin M., Luke G.M., Merrin J., Tchernyshov O., Uemura Y.J., Ichikawa N., Goto M., Uchida S. (1996) Phys Rev Lett 77:5421CrossRefADSGoogle Scholar
  31. 31.
    Luke G.M., Fudamoto Y., Kojima K.M., Larkin M., Merrin J., Nachumi B., Uemura Y.J., Sonier J.E., Ito T., Oka K., de Andrade M., Maple M.B., Uchida S. (1997) Physica C 282–287:1465CrossRefGoogle Scholar
  32. 32.
    Locquet J.-P., Jaccard Y., Cretton A., Williams E.J., Arrouy F., Machler E., Schneider T., Fisher Ø., Martinoli P. (1995) IBM Research Report RZ 2720, July 3rdGoogle Scholar
  33. 33.
    Uchida S., Tamasaku K., Tajima S. (1996) Phys Rev B 53:14558CrossRefADSGoogle Scholar
  34. 34.
    Shibauchi T., Kitano H., Uchinokura K., Maeda A., Kimura T., Kishio K. (1994) Phys Rev Lett 72:2263CrossRefADSGoogle Scholar
  35. 35.
    Pines D. (1994) In: Bedell K., Wang Z., Meltzer D.E., Valatzky A., Abrahams E. (Eds.) Strongly Correlated Electronic Materials: Los Alamos Symposium 1993, Addison-Wesley, Reading, MAGoogle Scholar
  36. 36.
    Olejniczak J., Zaleski A.J., Ciszek M. (1994) Mod Phys Lett B 8:185CrossRefADSGoogle Scholar
  37. 37.
    Porch A., Cooper J.R., Zheng D.N., Waldram J.R., Campbell A.M., Freeman P.A. (1993) Physica C 214:350CrossRefADSGoogle Scholar
  38. 38.
    Parr H. (1975) Phys Rev B 12:4886CrossRefADSGoogle Scholar
  39. 39.
    Imbert P., Jehanno G., Garciu C, Hodges J.A., Bahout-Moullem M. (1992) Physica C 190:316CrossRefADSGoogle Scholar
  40. 40.
    Radelli P.G., Hinks D.G., Wagner J.L., Dabrowski B., Vandervoort K.G., Viswanathan H.K., Jorgensen J.D. (1994) Phys Rev B 49:4163CrossRefADSGoogle Scholar
  41. 41.
    Chang J.-J., Scalapino D.J. (1989) Phys Rev B 40:4299CrossRefADSGoogle Scholar
  42. 42.
    Tarascon J.M., Greene L.H., Bagley B.G., McKinnon W.R., Barboux P., Hull G.W. (1987) In: Wolf S.A., Kresin V.Z. (Eds.) Novel Superconductivity, Plenum, New York, NY, 705Google Scholar
  43. 43.
    Fujishita H., Sato M. (1989) Solid State Commun 72:529CrossRefADSGoogle Scholar
  44. 44.
    Mirza K.A., Loram J.W., Cooper J.R. (1997) Physica C 282–287:1411CrossRefGoogle Scholar
  45. 45.
    Uemura Y.J. (1997) Physica C 282–287:194CrossRefGoogle Scholar
  46. 46.
    Tranquada J.M., Sternlieb B.J., Axe J.D., Nakamura Y., Uchida S. (1995) Nature 375:561CrossRefADSGoogle Scholar
  47. 47.
    Uemura Y.J., Keren A., Le L.P., Luke G.M., Wu W.D., Kubo Y., Manako T., Shimakawa Y., Subramanian M., Cobb J.L., Markert J.T. (1993) Nature 364:605CrossRefADSGoogle Scholar
  48. 48.
    Kimura T., Kishio K., Kobayashi T., Nakayama Y., Motohira N., Kitazawa K., Yamafuji K. (1992) Physica C 192:247CrossRefADSGoogle Scholar
  49. 49.
    Müller A., Zhao G., Conder K., Keller H. (1998) J Phys Cond Matt 10:L291CrossRefGoogle Scholar
  50. 50.
    Uemura Y.J., Luke G.M., Sternlieb B.J., Brewer J.H., Carolan J.F., Hardy W.N., Kadono R., Kempton J.R., Kiefl R.F., Kreitzman S.R., Mulhern P., Riseman T.M., Williams D.L., Yang B.X., Uchida S., Takagi H., Gopalakrishnan J., Sleight A.W., Subramanian M.A., Chien C.L., Cieplak M.Z., Xiao Gang, Lee V.Y., Statt B.W., Stronach C.E., Kossler W.J., Yu X.H. (1989) Phys Rev Lett 62:2317CrossRefADSGoogle Scholar
  51. 51.
    Zaleski A.J., Klamut J. (1999) Phys Rev B 59:14023CrossRefADSGoogle Scholar
  52. 52.
    Johnston D.C. (1989) Phys Rev Lett 62:957CrossRefADSGoogle Scholar
  53. 53.
    Bonn D.A., Kamal S., Zhang K., Liang R., Baar D.J., Klein E., Hardy W.N. (1994) Phys Rev B 50:4051CrossRefADSGoogle Scholar
  54. 54.
    Xiao G., Cieplak M.Z., Xiao J.Q., Chien C.L. (1990) Phys Rev B 42:8752CrossRefADSGoogle Scholar
  55. 55.
    Sumner M.J., Kim J.-T., Lemberger T.R. (1993) Phys Rev B 47:12 248CrossRefGoogle Scholar
  56. 56.
    Xiang T., Wheatley J.M. (1996) Phys Rev Lett 77:4632CrossRefADSGoogle Scholar
  57. 57.
    Radtke R.J., Kostur V.N., Levin K. (1996) Phys Rev B 53:R522CrossRefADSGoogle Scholar
  58. 58.
    Leggett A.J. (1994) Physica B 199–200:291CrossRefGoogle Scholar
  59. 59.
    Stolbov S.V. (1997) J Phys Cond Matt 9:4691CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • A. J. Zaleski
    • 1
  • J. Klamut
    • 1
    • 2
  1. 1.Institute of Low Temperature and Structure ResearchPoland
  2. 2.International Laboratory of High Magnetic Fields and Low TemperaturesWrocławPoland

Personalised recommendations