Bose-Einstein to BCS Crossover as a Model for High-Tc Cuprate Superconductors

  • Y. J. Uemura
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 545)


Crossover from Bose-Einstein (BE) to BCS condensation can be a guiding principle in understanding the evolution of high-T c cuprate superconductors as a function of carrier doping. This picture is developed by combining two experimental results: (1) the “universal correlations” between T c and n s/m* (superconducting carrier density / effective mass) found in nSR measurements of the magnetic field penetration depth λ and (2) the “pseudo gap” behavior observed in NMR, neutron scattering, dc- and optical conductivity, specific heat, and most-recently in angle-resolved photoemission (ARPES) measurements. Here we provide a critical review of these experimental results and the relevant theoretical work in order to elucidate the essential features of this crossover picture and to discuss condensation mechanisms in the cuprates.


Cooper Pair Crossover Region Resonate Valence Bond Underdoped Region Underdoped Cuprates 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example: Tilley D.R., Tilley J. (1990) Superfluidity and Superconductivity, Adam Hilger, BristolGoogle Scholar
  2. 2.
    Bardeen J., Cooper L.N., Schrieffer J.R. (1957) Phys Rev 108:1175–1204zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Bednorz J.G., Müller K.A. (1986) Z Phys B 64:189; Bednorz J.G., Müller K.A. (1988) Rev Mod Phys 60:585-600CrossRefADSGoogle Scholar
  4. 4.
    See, for example, papers published in: Salje E.K.H., Alexandrov A.S., Liang W.Y. (Eds.) (1995) Polarons and Bipolarons in High-Tc Superconductors and Related Materials, Cambridge University Press, and references thereinGoogle Scholar
  5. 6.
    For textbooks and/or review related to the (J.SR technique, see, for example: Schenck A. (1986) Muon Spin Rotation Spectroscopy, Adam Hilger, Bristol; Yamazaki T., Nakai K., Nagamine K. (Eds.) (1992) Perspectives of Meson Science, North Holland, Amsterdam; Karlsson E.B. (1995) Solid State Phenomena as Seen by Muons, Protons and Excited Nuclei, Oxford University PressGoogle Scholar
  6. 7.
    Redfield A.G. (1967) Phys Rev B 162:367–374CrossRefADSGoogle Scholar
  7. 8.
    Pincus P. (1964) Phys Lett 13:21–22CrossRefADSGoogle Scholar
  8. 9.
    Barford W., Gunn J.M.F. (1988) Physica C 156:515–522CrossRefADSGoogle Scholar
  9. 10.
    Aeppli G., et al. (1987) Phys Rev B 35:7130–7132CrossRefADSGoogle Scholar
  10. 11.
    Kossler W.J., et al. (1987) Phys Rev B 35:7133–7136CrossRefADSGoogle Scholar
  11. 12.
    Gygax F., et al. (1987) Europhys Lett 4:437–439CrossRefGoogle Scholar
  12. 13.
    Uemura Y.J., et al. (1988) Phys Rev B 38:909–912CrossRefADSGoogle Scholar
  13. 14.
    Uemura Y.J., et al. (1989) Phys Rev Lett 62:2317–2320CrossRefADSGoogle Scholar
  14. 15.
    Piimpin B., et al. (1990) Hyperf Interact 63:25–31CrossRefADSGoogle Scholar
  15. 16.
    Gliickler H. et al. (1990) Hyperf Interact 63:155–160CrossRefADSGoogle Scholar
  16. 17.
    Seaman C.L. et al. (1990) Phys Rev B 42:6801–6804CrossRefADSMathSciNetGoogle Scholar
  17. 18.
    Tallon J.L. et al. (1995) Phys Rev Lett 74:1008–1011CrossRefADSGoogle Scholar
  18. 19.
    Basov D.N. et al. (1995) Phys Rev Lett 74:598–601CrossRefADSGoogle Scholar
  19. 20.
    Uemura Y.J. et al. (1991) Phys Rev Lett 66:2665–2668CrossRefADSGoogle Scholar
  20. 21.
    Uemura Y.J. et al. (1991) Nature 352:605–607; Uemura Y.J. et al. (1994) Physica C 235–240:2501-2502CrossRefADSGoogle Scholar
  21. 22.
    Uemura Y.J, Luke G.M. (1993) Physica B 186–188:223–228; Uemura Y.J, Le L.P, Luke G.M. (1993) Synthet Met 55–57:2845-2852CrossRefADSGoogle Scholar
  22. 23.
    Uemura Y.J. et al. (1990) In: Kresin V.Z, Little W.A. (Eds.) Organic Superconductivity, Plenum, New York, 23–29; Le L.P. et al. (1992) Phys Rev Lett 68:1923-1926Google Scholar
  23. 24.
    Pistolesi E, Strinati G.C. (1994) Phys Rev B 49:6356–6359CrossRefADSGoogle Scholar
  24. 25.
    Friedberg R, Lee T.D, Ren H.C. (1990) Phys Rev B 42:4122–4134; Friedberg R, Lee T.D, Ren H.C. (1991) Phys Lett A 152:423-429CrossRefADSGoogle Scholar
  25. 26.
    Yasuoka H, Imai T, Shimizu T. (1989) In: Fukuyama H. (Ed.) Spin Correlations and Superconductivity, Springer, Berlin, 254–261; Yasuoka H. (1997) Hyperf Interact 105:27-34 and references thereinGoogle Scholar
  26. 27.
    Warren W.W. et al. (1989) Phys Rev Lett 62:1193–1196; Walstedt R.E. et al. (1990) Phys Rev B 41:9574-9576CrossRefADSGoogle Scholar
  27. 28.
    Takigawa M. et al. (1989) Physica C 162–164:853–856; Takigawa M. et al. (1991) Phys Rev B 43:247-257CrossRefADSGoogle Scholar
  28. 29.
    Alloul H, Ohno T, Mendels P. (1989) Phys Rev Lett 63:1700–1703CrossRefADSGoogle Scholar
  29. 30.
    Matsuura M. et al. (1995) J Phys Soc Jpn 64:721–724CrossRefADSGoogle Scholar
  30. 31.
    Rossat-Mignod J. et al. (1991) Physica C 185–189:86–92; Rossat-Mignod J. et al. (1992) Phys Scr T45:74CrossRefADSGoogle Scholar
  31. 32.
    Tranquada J.M. et al. (1992) Phys Rev B 46:5561–5575CrossRefADSGoogle Scholar
  32. 33.
    Ito T. et al. (1991) Nature 350:596–598CrossRefADSGoogle Scholar
  33. 34.
    Nakamura Y., Uchida S. (1993) Phys Rev B 47:8369–8372; Takenaka K. et al. (1994) Phys Rev B 50:6534-6537CrossRefADSGoogle Scholar
  34. 35.
    Homes C.C. et al. (1993) Phys Rev Lett 71:1645–1648CrossRefADSGoogle Scholar
  35. 36.
    Takagi H. et al. (1992) Phys Rev Lett 69:2975–2978; Ito T., Takenaka K., Uchida S. (1993) Phys Rev Lett 70:3995-3998CrossRefADSGoogle Scholar
  36. 37.
    Batlogg B. et al. (1994) Physica C 235–240:130–133CrossRefADSGoogle Scholar
  37. 38.
    Nakano T. et al. (1994) Phys Rev B 49:16000–16008CrossRefADSGoogle Scholar
  38. 39.
    Loram J.W. et al. (1993) Phys Rev Lett 71:1740–1743CrossRefADSGoogle Scholar
  39. 40.
    Marshall D.S. et al. (1996) Phys Rev Lett 76:4841–4844; Marshall D.S. et al. (1996) Science 273:325-329CrossRefADSGoogle Scholar
  40. 41.
    Ding H. et al. (1996) Nature 382:51–54CrossRefADSGoogle Scholar
  41. 42.
    Uemura Y.J. (1993) At: Euroconference on Superconductivity in Fullerenes, Oxides and Organic Materials, Pisa, Italy, January 1993, not publishedGoogle Scholar
  42. 43.
    Uemura Y.J. (1995) In: Salje E.K.H., Alexandrov A.S., Liang W.Y. (Eds.) Proc. of the Workshop on “Polarons and Bipolarons in High-Tc Superconductors and Related Materials”, Cambridge, UK, April 1994. Cambridge University Press, 453–460; Uemura Y.J. (1995) In: Feng S., Ren H.C. (Eds.) High-Tc Superconductivity and the Ceo Family, CCAST Symposium on..., Beijing, May 1994.Gordon and Breach, 113-142Google Scholar
  43. 44.
    Uemura Y.J. (1997) Physica C 282–287:194–197CrossRefADSGoogle Scholar
  44. 45.
    Eagles D.M. (1969) Phys Rev 186:456–463CrossRefADSGoogle Scholar
  45. 46.
    Leggett A.J. (1980) In: Pekalski A., Przystawa R. (Eds.) Modern Trends in the Theory of Condensed Matter, Springer, BerlinGoogle Scholar
  46. 47.
    Nozieres P., Schmitt-Rink S. (1985) J Low Temp Phys 59:195–211CrossRefADSGoogle Scholar
  47. 48.
    Micnas R., Ranninger J., Robaszkiewicz S. (1990) Rev Mod Phys 62:113–171CrossRefADSGoogle Scholar
  48. 49.
    Randeria M. (1995) In: Griffin A., Snoke D.W., Stringari S. (Eds.) Bose Einstein Condensation, Cambridge University Press, 355–391Google Scholar
  49. 50.
    Lee T.D. (1994) Physica C 235–240:186–188; Friedberg R., Lee T.D., Ren H.C. (1994) Phys Rev B 50:10190-10 217CrossRefADSGoogle Scholar
  50. 51.
    Ranninger J. (1994) Physica C 235–240:277–280CrossRefADSGoogle Scholar
  51. 52.
    Pistolesi F., Strinati G.C. (1996) Phys Rev B 53:15168–15192; and references thereinCrossRefADSGoogle Scholar
  52. 53.
    Micnas R., Robaszkiewicz S., Kostyrko T. (1995) Phys Rev B 52:6863–6879; Micnas R., Kostyrko T. (1996) In: Klamut J. et al. (Eds.) Recent Developments in High Temperature Superconductivity, Lecture Notes in Physics vol. 475, Springer, Berlin Heidelberg, 221-242CrossRefADSGoogle Scholar
  53. 54.
    Pietronero L., Strassler S. (1992) Europhys Lett 18:627–633ADSCrossRefGoogle Scholar
  54. 55.
    Enz C.P. (1989) Helv Phys Acta 62:122–138; Enz C.P., Galasiewicz Z.M. (1988) Solid State Commun 66:49-50; Enz C.P., Galasiewicz Z.M. (1993) Physica C 214:239-246Google Scholar
  55. 56.
    van der Marel D., Mooij J.E. (1992) Phys Rev B 45:9940–9950CrossRefADSGoogle Scholar
  56. 57.
    Tokumitsu A., Miyake K., Yamada K. (1993) Phys Rev B 47:11988–12003CrossRefADSGoogle Scholar
  57. 58.
    Drechsler M., Zwerger W. (1992) Ann Physik 1:15–23CrossRefADSGoogle Scholar
  58. 59.
    Randeria M. et al. (1992) Phys Rev Lett 69:2001–2004CrossRefADSGoogle Scholar
  59. 60.
    Sa de Melo C.A.R., Randeria M., Engelbrecht J.R. (1993) Phys Rev Lett 71:3202–3205CrossRefADSGoogle Scholar
  60. 61.
    Mott N.F. (1990) Adv Phys 39:55–81CrossRefADSGoogle Scholar
  61. 62.
    Schneider T., Keller H.J. (1992) Phys Rev Lett 69:3374–3377CrossRefADSGoogle Scholar
  62. 63.
    See, for example: Nozieres P. (1995) In: Griffin A., Snoke D.W., Stringari S. (Eds.) Bose Einstein Condensation, Cambridge University Press, 15–31Google Scholar
  63. 64.
    Doniach S., Inui M. (1990) Phys Rev B 41:6668–6678CrossRefADSGoogle Scholar
  64. 65.
    Emery V.J., Kivelson S.A. (1995) Nature 374:434–437CrossRefADSGoogle Scholar
  65. 66.
    Tchernyshyov O. (1997) Phys Rev B 56:3372CrossRefADSGoogle Scholar
  66. 67.
    Anderson P.W. (1987) Science 235:1196–1198CrossRefADSGoogle Scholar
  67. 68.
    Anderson P.W. (1973) Mater Res Bull 8:153; Fazekas P., Anderson P.W. (1970) Phil Mag 30:432-440CrossRefGoogle Scholar
  68. 69.
    Nagaosa N., Lee P.A. (1990) Phys Rev Lett 64:2450–2453; Lee P.A., Nagaosa N. (1992) Phys Rev B 46:5621-5639CrossRefADSGoogle Scholar
  69. 70.
    Suzumura Y., Hasegawa Y., Fukuyama H. (1988) J Phys Soc Jpn 57:2768; Tanamoto T., Kuboki K., Fukuyama H. (1991) J Phys Soc Jpn 60:3072-3092CrossRefADSGoogle Scholar
  70. 71.
    Kim C. et al. (1996) Phys Rev Lett 77:4054–4057CrossRefADSGoogle Scholar
  71. 72.
    See, for example: Timusk T., Tanner R.B. (1989) In: Ginsberg G.M. (Ed.) Physical Properties of High-Temperature Superconductors I, World Sci., Singapore, 339–407; Tanner R.B., Timusk T. (1992) In: Ginsberg G.M. (Ed.) Physical Properties of High-Temperature Superconductors III, World Sci., Singapore, 363-469, and references therein. See also: Uchida S. (1995) In: Feng S., Ren H.C. (Eds.) Proc. CCAST Symposium on High-Tc Superconductivity and the Ceo Family, Beijing, May 1994, Gordon and Breach, London, 199-249Google Scholar
  72. 73.
    Uemura Y.J. (1996) In: Batlogg B. et al. (Eds.) Proc. 10th Anniversary Workshop of High-Tc Superconductors, Houston, March 1996, World Sci., Singapore, 68–71; Uemura Y.J. (1997) Hyperf Interact 105:35-46Google Scholar
  73. 74.
    Uemura Y.J. et al. (1993) Nature 364:605CrossRefADSGoogle Scholar
  74. 75.
    Niedermayer Ch. et al. (1993) Phys Rev Lett 71:1764CrossRefADSGoogle Scholar
  75. 76.
    Bose S.N. (1924) Z. Phys. 26:178; Einstein A. (1924) Sitzber Kgl Preuss Akad Wiss 261; Einstein A. (1925) Sitzber Kgl Preuss Akad Wiss 3CrossRefADSGoogle Scholar
  76. 77.
    Jin D.S. et al. (1996) Phys Rev Lett 77:420–423CrossRefADSGoogle Scholar
  77. 78.
    Mewes M.-O. et al. (1996) Phys Rev Lett 77:416–419CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Y. J. Uemura
    • 1
  1. 1.Physics DepartmentColumbia UniversityNew YorkUSA

Personalised recommendations