Advertisement

Vortex Pinning and Critical Current Enhancements in High-Tc Superconductors with Fission-Generated Random Columnar Defects

  • J. R. Thompson
  • J. G. Ossandón
  • L. Krusin-Elbaum
  • K. J. Song
  • D.K. Christen
  • J. Z. Wu
  • J.L. Ullmann
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 545)

Abstract

Randomly oriented columnar defects can efficiently increase and stabilize the current density in many high-Tc superconductors. Irradiation with 0.8 GeV protons induces a prompt fission of heavy constituent nuclei, such as Hg, Tl, Pb, and Bi, in the cuprate compounds; then recoiling fragments generate randomly oriented columnar tracks. This markedly enhances the persistent current density J, elevates the irreversibility line to higher fields and temperatures, and reduces the temporal rate of current decay. The associated crystalline disorder depresses Tc by ~ 0.1–1 K per 1016 proton/cm2. At optimal proton fluency, J is enhanced by one or more orders of magnitude (compared with unirradiated virgin materials) and the logarithmic decay rate d ln(J)/d ln(i) is diminished. However, we show that while these vortex pins greatly reduce thermally activated current decay in the highly anisotropic material Bi-2212, significant temperature-independent current decay remains, due to quantum tunneling of vortices. An analysis of the thermally-induced current decay in a “Maley” framework provides the effective pinning energy U(J, T) of irradiated materials, for comparison with the virgin superconductors. The influence of quantum decay on this analysis is shown.

Keywords

Quantum Tunneling Current Decay Irradiate Material Critical State Model Columnar Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review, see: Blatter G., Feigel’man M.V., Geshkenbein V.B., Larkin A.I., Vinokur V.M. (1994) Rev Mod Phys 66:1125 and references thereinCrossRefADSGoogle Scholar
  2. 2.
    Civale L. (1992) In: Jin S. (Ed.) Processing and Properties of High-Tc Superconductors, vol I—Bulk Materials, World Sci., Singapore, 299Google Scholar
  3. 3.
    Krusin-Elbaum L., Thompson J.R., Wheeler R., Marwick A.D., Li C, Patel S., Shaw D.T., Lisowski P., Ullmann J. (1994) Appl Phys Lett 64:3331CrossRefADSGoogle Scholar
  4. 4.
    Becchetti F.D., Jaenecke J., Lister P., Kwiatowski K., Karwowski H., Zhou S. (1983) Phys Rev C 28:276; Vaishnene L.A., Andronenko L.N., Kovshevny G.G., Kotov A.A., Solyakin G.E., Neubert W. (1981) Z Phys A 302:143CrossRefADSGoogle Scholar
  5. 5.
    Thompson J.R., Christen D.K., Paranthaman M., Krusin-Elbaum L., Marwick A.D., Civale L., Wheeler R., Ossandon J.G., Lisowski P., Ullmann J. (1996) In: Klamut J., Veal B.V., Dabrowski B.M., Klamut P.W., Kazimierski M. (Eds.) Recent Developments in High Temperature Superconductivity, Lecture Notes in Physics vol 475, Springer, Berlin Heidelberg, 321–335CrossRefGoogle Scholar
  6. 6.
    Thompson J.R., Krusin-Elbaum L., Kim Y.C., Christen D.K., Marwick A.D., Wheeler R., Li C, Patel S., Shaw D.T., Lisowski P., Ullmann J. (1995) IEEE Trans Appl Supercond 5:1876CrossRefGoogle Scholar
  7. 7.
    Safar H., Cho J.H., Fleshier S., Maley M.P., Willis J.O., Coulter J.Y., Ullmann J.L., Lisowski P.W., Riley G.N., Rupich M.W., Thompson J.R., Krusin-Elbaum L. (1995) Appl Phys Lett 67:130CrossRefADSGoogle Scholar
  8. 8.
    Thompson J.R., Krusin-Elbaum L., Christen D.K., Song K.J., Paranthaman M., Ullmann J.L., Wu J.Z., Ren Z.F., Wang J.H., Tkaczyk J.E., DeLuca J.A. (1997) Appl Phys Lett 71:536CrossRefADSGoogle Scholar
  9. 9.
    Krusin-Elbaum L., Lopez D., Thompson J.R., Wheeler R., Ullmann J., Chu C.W., Lin Q.M. (1997) Nature 389:243CrossRefADSGoogle Scholar
  10. 10.
    Li C, Patel S., Ye J., Narumi E., Shaw D.T. (1993) Appl Phys Lett 63:2558CrossRefADSGoogle Scholar
  11. 11.
    Kim Y.C., Thompson J.R., Christen D.K., Paranthaman M., Specht E.D. (1995) Physica C 253:457Google Scholar
  12. 12.
    Gun S.H., Wu J.Z., Tawdry S.C., Eckert D.R. (1996) Appl Phys Lett 68:2565CrossRefADSGoogle Scholar
  13. 13.
    Fietz W.A., Webb W.W. (1969) Phys Rev 178:657CrossRefADSGoogle Scholar
  14. 14.
    Sun Y.R., Amm K.M., Schwartz J. (1995) IEEE Trans Appl Supercond 5:1870CrossRefGoogle Scholar
  15. 15.
    Usami R., Itoh M., Fukuoka A., Wu X.J., Tanabe K. (1996) Physica C 269:193CrossRefADSGoogle Scholar
  16. 16.
    Thompson J.R. (1998) In: Narlikar A.V. (Ed.) Studies of High Temperature Superconductors, vol 26, Nova Sci. Publ., Commack, NY, 113–131Google Scholar
  17. 17.
    Blatter G., Geshkenbein V.B., Larkin A.I. (1992) Phys Rev Lett 68:875CrossRefADSGoogle Scholar
  18. 18.
    Krusin-Elbaum L., Blatter G., Thompson J.R., Petrov D.K., Wheeler R., Ullmann J., Chu C.W. (1998) Phys Rev Lett 81:3948CrossRefADSGoogle Scholar
  19. 19.
    Thompson J.R., Ossandon J.G., Krusin-Elbaum L., Song K.J., Christen D.K., Ullmann J.L. (1999) Appl Phys Lett 74:3699CrossRefADSGoogle Scholar
  20. 20.
    Morias Smith C, Caldeira A.O., Blatter G. (1996) Phys Rev B 54:R784; Morias Smith C, Caldeira A.O., Blatter G. (1996) Czech J Phys 46:1739CrossRefADSGoogle Scholar
  21. 21.
    Maley M.P., Willis J.O., Lessure H., McHenry M.E. (1990) Phys Rev B 42:2639CrossRefADSGoogle Scholar
  22. 22.
    Niederost M., Suter A., Visani P., Mota A.C., Blatter G. (1996) Phys Rev B 53:9286CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • J. R. Thompson
    • 1
    • 2
  • J. G. Ossandón
    • 3
  • L. Krusin-Elbaum
    • 4
  • K. J. Song
    • 2
  • D.K. Christen
    • 1
  • J. Z. Wu
    • 5
  • J.L. Ullmann
    • 6
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.Dept. of PhysicsUniversity of TennesseeKnoxvilleUSA
  3. 3.Facultad de IngenieríaUniversidad de TalcaCuricóChile
  4. 4.IBM Watson Research CenterYorktownUSA
  5. 5.Department of PhysicsUniversity of KansasLawrenceUSA
  6. 6.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations