Advertisement

Muon Spin Rotation Studies of Doping in High-Tc Superconductors

  • J. I. Budnick
  • Ch. Niedermayer
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 545)

Abstract

Muon spin rotation (µSR) studies on high temperature superconducting (HTS) cuprates will be reviewed. After an introduction to the technique, studies of the superfluid density will be described and the universal variation of the superfluid density n s as a function of [hole concentration] p will be discussed. Important exceptions will be noted, such as the YBa2Cu3O7−δ system, where, besides the intrinsically superconducting CuO2 planes, an interlayer may be metallized (here the CuO chains) which consequently contributes to a significant enhancement in superfluid density and associated improvement in technologically interesting properties such as flux pinning and critical current density. A common phase diagram of the antiferromagnetic correlations for Sr doped La2CuO4 and Ca doped YBa2Cu3O6 and, in particular the coexistence of strong electronic magnetism within the superconducting state, will be discussed in terms of µSR experiments in zero external magnetic field.

Keywords

CuO2 Plane Muon Spin Internal Magnetic Field Universal Variation Superfluid Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.
    Tallon J.L. et al. (1995) Phys Rev B 51:12 911CrossRefGoogle Scholar
  2. 3.
    Dawson W.K. et al. (1988) J Appl Phys 64:5803CrossRefADSGoogle Scholar
  3. 4.
    Barford W., Gunn J.M.F. (1988) Physica C 156:515CrossRefADSGoogle Scholar
  4. 5.
    Uemura Y.J. et al. (1989) Phys Rev Lett 62:2317CrossRefADSGoogle Scholar
  5. 6.
    Uemura Y.J. et al. (1991) Phys Rev Lett 66:2665CrossRefADSGoogle Scholar
  6. 7.
    Loram J.W. et al. (1993) Phys Rev Lett 71:1740CrossRefADSGoogle Scholar
  7. 8.
    Emery V.J., Kivelsen S.A. (1995) Nature 374:434CrossRefADSGoogle Scholar
  8. 9.
    Niedermayer Ch. et al. (1993) Phys Rev Lett 71:1764CrossRefADSGoogle Scholar
  9. 10.
    Niedermayer Ch. et al. (1994) Phys Rev Lett 72:2502CrossRefADSGoogle Scholar
  10. 11.
    Uemura Y.J. et al. (1993) Nature 364:605CrossRefADSGoogle Scholar
  11. 12.
    Bernhard C. et al. (1994) Physica C 226:250CrossRefADSGoogle Scholar
  12. 13.
    Wade J.M. et al. (1994) J Superconduct 7:261CrossRefADSGoogle Scholar
  13. 14.
    Bernhard C. et al. (1995) Phys Rev B 52:10488CrossRefADSGoogle Scholar
  14. 15.
    Prenninger M. (1996) In: Bozoric I., van der Marel D. (Eds.) Spectroscopic Studies of Superconductors, SPIE, BellinghamGoogle Scholar
  15. 16.
    Tallon J.L. et. al. (1995) Phys Rev Lett 74:1008CrossRefADSGoogle Scholar
  16. 17.
    Basov D.N. et al. (1995) Phys Rev Lett 74:598CrossRefADSGoogle Scholar
  17. 18.
    Liitgemeier H. (1994) In: Sigmund E., Mailer K.A. (Eds.) Phase Separation in Cuprate Superconductors, Springer, Berlin, 225Google Scholar
  18. 19.
    Budnick J.I. et al. (1988) Europhys Lett 5:65CrossRefGoogle Scholar
  19. 20.
    Weldinger A. et al. (1989) Phys Rev Lett 62. 102CrossRefADSGoogle Scholar
  20. 21.
    Nishida N. et al. (1988) J Phys Soc Jpn 57:597CrossRefADSGoogle Scholar
  21. 22.
    Weldinger A. et al. (1990) Hyperf Interact 63:147CrossRefADSGoogle Scholar
  22. 23.
    Chou F.C. et al. (1993) Phys Rev Lett 71:2323CrossRefADSGoogle Scholar
  23. 24.
    Borsa F. et al. (1995) Phys Rev B 52:7334CrossRefADSGoogle Scholar
  24. 25.
    Gooding R.J. et al. (1994) Phys Rev B49:6067CrossRefADSGoogle Scholar
  25. 26.
    Casalta H., Alloul H., Marucco J.-F. (1993) Physica C 204:331CrossRefADSGoogle Scholar
  26. 27.
    Chou F.C. et al. (1995) Phys Rev Lett 75:2204Google Scholar
  27. 28.
    Tallon J.L., Flower N.E., Williams G.V.M. (1999) to be publishedGoogle Scholar
  28. 29.
    Emery V.J., Kievelson S.A. (1993) Physica C 209:597CrossRefADSGoogle Scholar
  29. 30.
    Niedermayer Ch., Forgan E.M., Gluckler H., et al. (1999) Phys Rev Lett 83:3932–3935CrossRefADSGoogle Scholar
  30. 31.
    Jorgensen J.D. et al. (1988) Phys Rev B 38:11337CrossRefADSGoogle Scholar
  31. 32.
    Ansaldo E.J. et al. (1989) Phys Rev B 40:2555CrossRefADSGoogle Scholar
  32. 33.
    Moodenbaugh A.R. et al. (1988) Phys Rev B 38:4596CrossRefADSGoogle Scholar
  33. 34.
    Radaelli P.G. et al. (1994) Phys Rev B 49:4163CrossRefADSGoogle Scholar
  34. 35.
    Tallon J.L. et al. (1997) Physica C 282–287:236CrossRefADSGoogle Scholar
  35. 36.
    Luke G.M. et al. (1991) Physica C 185–189 1175; Kumagai K. et al. (1991) Physica C 185-189:913CrossRefADSGoogle Scholar
  36. 37.
    Tranquada J.M. et al. (1995) Nature 375:561; Tranquada J.M. et al. (1997) Phys Rev Lett 78:338CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • J. I. Budnick
    • 1
  • Ch. Niedermayer
    • 2
  1. 1.Department of Physics and Institute for Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Fakultät für PhysikUniversität KonstanzKonstanzGermany

Personalised recommendations