Specifying Active Rules for Database Maintenance

  • Leopoldo Bertossi
  • Javier Pinto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1773)


In this article we extend previous work on the development of logical foundations for the specification of the dynamics of databases. In particular, we deal with two problems. Firstly, the derivation of active rules that maintain the consistency of the database by triggering repairing actions. Secondly, we deal with the correct integration of the specification of the derived rules into the original specification of the database dynamics. In particular, we show that the expected results are achieved. For instance, the derived axiomatization includes, at the object level, the specification that repairing action executions must be enforced whenever necessary.


Internal Action Successor State Integrity Constraint Predicate Logic Active Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Arenas and L. Bertossi. Hypothetical Temporal Queries in Databases. In A. Borgida, V. Chaudhuri, and M. Staudt, editors, Proc. “ACM SIGMOD/PODS 5th Int. Workshop on Knowledge Representation meets Databases (KRDB’98): Innovative Application Programming and Query Interfaces, pages 4.1–4.8, 1998.
  2. 2.
    M. Arenas and L. Bertossi. The Dynamics of Database Views. In B. Freitag, H. Decker, M. Kifer, and A. Voronkov, editors, Transactions and Change in Logic Databases, Lecture Notes in Computer Science, Vol. 1472, pages 197–226, Springer-Verlag, 1998.CrossRefGoogle Scholar
  3. 3.
    L. Bertossi, M. Arenas, and C. Ferretti. SCDBR: An Automated Reasoner for Specifications of Database Updates. Journal of Intelligent Information Systems, 10(3):253–280, 1998.CrossRefGoogle Scholar
  4. 4.
    L. Bertossi, J. Pinto, and R. Valdivia. Specifying Database Transactions and Active Rules in the Situation Calculus. In Logical Foundations for Cognitive Agents. Contributions in Honor of Ray Reiter, pages 41–56, Springer, 1999.Google Scholar
  5. 5.
    S. Ceri and J. Widom. Deriving Production Rules for Constraint Maintenance. In D. McLeod, R. Sacks-Davis, and H.-J. Schek, editors, Proc. of the 16th Int. Conf. on Very Large Data Bases, VLDB’90, Brisbane, Australia, August 13–16, 1990, pages 566–577, Morgan Kaufmann Publishers, 1990.Google Scholar
  6. 6.
    J. Chomicki. Efficient Checking of Temporal Integrity Constraints Using Bounded History Encoding. ACM Transactions on Database Systems, 20(2):149–186, June 1995.CrossRefGoogle Scholar
  7. 7.
    J. Chomicki and G. Saake, editors. Logics for Databases and Information Systems. Kluwer Academic Publishers, 1998.Google Scholar
  8. 8.
    T. Chou and M. Winslett. A Model-Based Belief Revision System. J. Automated Reasoning, 12:157–208, 1994.CrossRefMathSciNetGoogle Scholar
  9. 9.
    K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic and Databases, pages 293–322, Plenum Press, 1978.Google Scholar
  10. 10.
    A. Van Gelder and R. Topor. Safety and Correct Translation of Relational Calculus Formulas. In Proc. ACM Symposium on Principles of Database Systems, PODS’87, San Diego, CA, pages 313–327, ACM Press, 1987.Google Scholar
  11. 11.
    M. Gertz. An Extensible Framework for Repairing Constraint Violations. In S. Conrad, H.-J. Klein, and K.-D. Schewe, editors, Integrity in Databases — Proc. of the 7th Int. Workshop on Foundations of Models and Languages for Data and Object, Schloss Dagstuhl, Sept. 16–20, 1996, Preprint No. 4, pages 41–56, Institut für Technische Informationssysteme, Universität Magdeburg, 1996.Google Scholar
  12. 12.
    M. Gertz. Diagnosis and Repair of Constraint Violations in Database Systems, Dissertationen zu Datenbanken und Informationssystemen, Vol. 19. infix-Verlag, Sankt Augustin, 1996.Google Scholar
  13. 13.
    F. Lin. Embracing Causality in Specifying the Indirect Effects of Actions. In Proc. International Joint Conference on Artificial Intelligence, Montreal, pages 1985–1991, Morgan Kaufmann Publishers, 1995.Google Scholar
  14. 14.
    F. Lin and R. Reiter. State Constraints Revisited. Journal of Logic and Computation. Special Issue on Actions and Processes, 4(5):655–678, 1994.zbMATHMathSciNetGoogle Scholar
  15. 15.
    F. Lin and R. Reiter. How to Progress a Database. Artificial Intelligence, 92(1–2):131–167, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    J. McCarthy. Circumscription a form of Non-Monotonic Reasoning. Artificial Intelligence, 13:27–39, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    J. McCarthy and P. Hayes. Some Philosophical Problems from the Standpoint of Artificial Intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence, Vol. 4, pages 463–502. Edinburgh University Press, Edinburgh, Scotland, 1969.Google Scholar
  18. 18.
    S. McIlraith. Representing Actions and State Constraints in Model-Based Diagnosis. In Proc. of the National Conference on Artificial Intelligence (AAAI-97), pages 43–49, 1997.Google Scholar
  19. 19.
    R. Miller and M. Shanahan. Narratives in the Situation Calculus. The Journal of Logic and Computation, 4(5):513–530, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    J. Minker. Logic and Databases. Past, Present and Future. AI Magazine, pages 21–47, 1997.Google Scholar
  21. 21.
    J. Pinto. Causality, Indirect Effects and Triggers (Preliminary Report). In Seventh International Workshop on Non-monotonic Reasoning, Trento, Italy, 1998. URL=
  22. 22.
    J. Pinto. Occurrences and Narratives as Constraints in the Branching Structure of the Situation Calculus. Journal of Logic and Computation, 8:777–808, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    J. Pinto. Compiling Ramification Constraints into Effect Axioms. Computational Intelligence, 13(3), 1999.Google Scholar
  24. 24.
    J. Pinto and R. Reiter. Adding a Time Line to the Situation Calculus. In Working Notes: The Second Symposium on Logical Formalizations of Commonsense Reasoning, Austin, Texas, USA, pages 172–177, 1993.Google Scholar
  25. 25.
    R. Reiter. The Frame Problem in the Situation Calculus: a Simple Solution (sometimes) and a Completeness Result for Goal Regression. In V. Lifschitz, editor, Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pages 359–380, Academic Press, 1991.Google Scholar
  26. 26.
    R. Reiter. On Specifying Database Updates. Journal of Logic Programming, 25(1):53–91, 1995.zbMATHCrossRefGoogle Scholar
  27. 27.
    K.-D. Schewe and B. Thalheim. Limitations of the Rule Triggering Systems for Integrity Maintenance in the Context of Transition Specifications. Acta Cybernetica, 13:277–304, 1998.zbMATHMathSciNetGoogle Scholar
  28. 28.
    M. Thielscher. Ramification and Causality. Artificial Intelligence, 89:317–364, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    J. Ullman. Principles of Database and Knowledge-Base Systems, Vol. I. Computer Science Press, 1988.Google Scholar
  30. 30.
    J. Widom and S. Ceri. Active Database Systems: Triggers and Rules for Advanced Database Processing. Morgan Kaufmann Publishers, 1996.Google Scholar
  31. 31.
    C. Zaniolo, S. Ceri, Ch. Faloutsos, R. T. Snodgrass, V.S. Subrahmanian, and R. Zicari. Advanced Database Systems. Morgan Kaufmann Publishers, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Leopoldo Bertossi
    • 1
  • Javier Pinto
    • 1
  1. 1.Departamento de Ciencia de la Computación Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations