Advertisement

Gapped Phases of Quantum Wires

  • Oleg A. Starykh
  • Dmitrii L. Maslov
  • Wolfgang Häusler
  • Leonid I. Glazman
  • Glazman
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 544)

Abstract

We investigate possible nontrivial phases of a two-subband quantum wire. It is found that inter- and intra-subband interactions may drive the electron system of the wire into a gapped state. If the nominal electron densities in the two subbands are sufficiently close to each other, then the leading instability is the inter-subband charge-density wave (CDW). For larger difference in the densities, the interaction in the inter-subband Cooper channel may lead to a superconducting instability. The total charge density mode, responsible for the conductance of an ideal wire, always remains gapless, which enforces the two-terminal conductance to be at the universal value of 2e 2/hper occupied subband. On the contrary, the tunneling density of states (DOS) in the bulk of the wire acquires a hard gap, above which the DOS has a non-universal singularity. This singularity is weaker than the square-root divergency characteristic for non-interacting quasiparticles near a gap edge due to the “dressing” of massive modes by a gapless total charge density mode. The DOS for tunneling into the end of a wire in a CDW-gapped state, however, preserves the power-law behavior due to the frustration the edge introduces into the CDW order. This work is related to the vast literature on coupled 1D systems, and most of all, on two-leg Hubbard ladders. Whenever possible, we give derivations of the important results by other authors, adopted for the context of our study.

Keywords

Quantum Wire Gapped Phase Luttinger Liquid Cooper Phase Umklapp Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Schulz, in Proceedings of Les Houches Summer School LXI, ed. E. Akkermans, G. Montambaux, J. Pichard, and J. Zinn-Justin (Elsevier, Amsterdam, 1995), p.533.Google Scholar
  2. 2.
    M. P. A. Fisher and L. I. Glazman in Mesoscopic Electron Transport, edited by L. P. Kouwenhoven, L. L. Sohn and G. Schön, Kluwer Academic, Boston, 1997.Google Scholar
  3. 3.
    M. Bockrath et al., Nature 397, 598 (1999); cond-mat/9812233.CrossRefGoogle Scholar
  4. 4.
    C. Dekker, Physics Today 52, 22 (1999).CrossRefGoogle Scholar
  5. 5.
    C. Ilani et al., cond-mat/9910116.Google Scholar
  6. 6.
    S. V. Zaitsev-Zotov et al., cond-mat/990756.Google Scholar
  7. 7.
    C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233 (1992).Google Scholar
  8. 8.
    K. A. Matveev and L. I. Glazman, Phys. Rev. Lett 70, 990 (1993).CrossRefGoogle Scholar
  9. 9.
    S. Tarucha, T. Honda, and T. Saku, Sol. St. Commun. 94, 413 (1995).CrossRefGoogle Scholar
  10. 10.
    K. J. Thomas et al., Phys. Rev. Lett 77, 135 (1996).CrossRefGoogle Scholar
  11. 11.
    A. Yacoby et al., Phys. Rev. Lett 77, 4612 (1996); Solid State Communications 101, 77 (1997).CrossRefGoogle Scholar
  12. 12.
    A. M. Finkelstein and A. I. Larkin, Phys. Rev. B 47, 10461 (1993).Google Scholar
  13. 13.
    M. Fabrizio, Phys. Rev. B 48, 15838 (1993).Google Scholar
  14. 14.
    H. J. Schulz, Phys. Rev. B 53, R2959 (1996).Google Scholar
  15. 15.
    L. Balents and M. P. A. Fisher, Phys. Rev. B 53, 12133 (1996).Google Scholar
  16. 16.
    H. J. Schulz, cond-mat/9808167.Google Scholar
  17. 17.
    V. J. Emery, S. A. Kivelson, and O. Zachar, Phys. Rev. B 56, 6120 (1997).Google Scholar
  18. 18.
    H. H. Lin, L. Balents, and M. P. A. Fisher, Phys. Rev. B 56, 6569 (1997); condmat/ 9801285.Google Scholar
  19. 19.
    C. L. Kane, L. Balents and M. P. A. Fisher, Phys. Rev. Lett 79, 5086 (1997).CrossRefGoogle Scholar
  20. 20.
    Yu. A. Krotov, D. H. Lee. and S. G. Louie, Phys. Rev. Lett 78, 4245 (1997).CrossRefGoogle Scholar
  21. 21.
    R. Egger and A. O. Gogolin, Phys. Rev. Lett 79, 5082 (1997).CrossRefGoogle Scholar
  22. 22.
    R. Egger, A. O. Gogolin, Eur. Phys. J. B 3, 281 (1998).Google Scholar
  23. 23.
    H. Yoshioka and A. Odintsov, Phys. Rev. Lett. 82, 374 (1999).CrossRefGoogle Scholar
  24. 24.
    Yu. A. Firsov, V. N. Prigodin, and Chr. Seidel, Phys. Rep. 126, 245 (1985).CrossRefGoogle Scholar
  25. 25.
    C. M. Varma and A. Zawadowski, Phys. Rev. B 32, 7399 (1985).Google Scholar
  26. 26.
    J. Voit, Eur. Phys. J. B 5, 505 (1999).Google Scholar
  27. 27.
    P. B. Wiegmann, Phys. Rev. B 59, 15705 (1999).Google Scholar
  28. 28.
    E. Orignac and T. Giamarchi, Phys. Rev. B 56, 7167 (1997).Google Scholar
  29. 29.
    M. Mori, M. Ogata and H. Fukuyama, J. Phys. Soc. Jpn. 66, 3363 (1997).CrossRefGoogle Scholar
  30. 30.
    O. A. Starykh and D. L. Maslov, Phys. Rev. Lett. 80, 1694 (1998).CrossRefGoogle Scholar
  31. 31.
    L. P. Kouwenhoven et al., Phys. Rev. Lett. 65, 361 (1990).CrossRefGoogle Scholar
  32. 32.
    K. B. Efetov and A. I. Larkin, Zh. Exp. Teor. Phys. 69, 764 (1975) [Sov. Phys.-JETP 42, 390 (1976)].Google Scholar
  33. 33.
    H. Frölich, J. Phys. C 1, 544 (1968).Google Scholar
  34. 34.
    J. Ruvalds, Adv. Phys. 30, 677 (1981).CrossRefGoogle Scholar
  35. 35.
    F. D. M. Haldane, Phys. Rev. Lett. 45, 1358 (1980).CrossRefGoogle Scholar
  36. 36.
    T. Giamarchi, Phys. Rev. B 44, 2905 (1991).Google Scholar
  37. 37.
    W. Metzner and C. Di Castro, Phys. Rev. B 47, 16107 (1993).Google Scholar
  38. 38.
    G. D. Mahan, Many-Particle Physics, 2nd ed., Plenum Press, New York, 1990, section 4.4.Google Scholar
  39. 39.
    J. M. Luttinger, J. Math.. Phys. 4, 1154 (1963).CrossRefGoogle Scholar
  40. 40.
    V. J. Emery, Highly Conducting One-Dimensional Solids, eds. J. T. Devreese, R. E. Evrard and V. E. van Doren, New York, Plenum, p. 247 (1979).Google Scholar
  41. 41.
    S. Capponi, D. Poilblanc and T. Giamarchi, cond-mat/9909360.Google Scholar
  42. 42.
    K.A. Matveev, D. Yue, and L.I. Glazman, Phys. Rev. Lett. 71, 3351 (1993).CrossRefGoogle Scholar
  43. 43.
    V. L. Pokrovsky and A. L. Talapov, Sov. Phys. JETP 48, 570 (1978).Google Scholar
  44. 44.
    H. J. Schulz, Phys. Rev. B 22, 5274 (1980).Google Scholar
  45. 45.
    A. Luther, Phys. Rev. B 15, 403 (1977).Google Scholar
  46. 46.
    T. Giamarchi and H. Schulz, Phys. Rev. B 39, 4620 (1989)Google Scholar
  47. 47.
    J. B. Kogut, Rev. Mod. Phys. 51, 701 (1979).CrossRefGoogle Scholar
  48. 48.
    I. Sa. and H. J. Schulz, Phys. Rev. B 52, R17040 (1995).Google Scholar
  49. 49.
    D. L. Maslov and M. Stone, Phys. Rev. B 52, R5539 (1995).CrossRefGoogle Scholar
  50. 50.
    V. V. Ponomarenko, Phys. Rev. B 52, R8666 (1995).Google Scholar
  51. 51.
    T. Giamarchi and H. Maurey, in Correlated Fermions and Transport in Mesoscopic Systems, edited by T. Martin, G. Montambaux, and J. Tran Thanh Van (Editions Frontieres, 1996), p. 13.Google Scholar
  52. 52.
    I. E. Dzyaloshinskii and A. I. Larkin, Sov. Phys. JETP 38, 202 (1974).Google Scholar
  53. 53.
    A. M. Chang, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 77, 2538 (1996).CrossRefGoogle Scholar
  54. 54.
    A. V. Shytov, L. S. Levitov, and B. I. Halperin, Phys. Rev. Lett. 80, 141 (1998).CrossRefGoogle Scholar
  55. 55.
    A. Alekseev, V. Cheianov, A. P. Dmitriev, and V. Yu. Kachorovskii, condmat/9904076.Google Scholar
  56. 56.
    S. T. Chui and P. A. Lee, Phys. Rev. Lett. 35, 315 (1975).CrossRefGoogle Scholar
  57. 57.
    Z. Gulacsi and K. S. Bedell, Phys. Rev. Lett. 72, 2765 (1994).CrossRefGoogle Scholar
  58. 58.
    A. Luther and V. J. Emery, Phys. Rev. Lett. 33, 589 (1974).CrossRefGoogle Scholar
  59. 59.
    S. Sachdev, T. Senthil and R. Shankar, Phys. Rev. B 50, 258 (1994).Google Scholar
  60. 60.
    D. G. Shelton, A. A. Nersesyan, and A. M. Tsvelik, Phys. Rev. B 53, 8561 (1996).Google Scholar
  61. 61.
    A. M. Tsvelik, Quantum Field Theory in Condensed Matter Physics, Cambridge University Press, 1995.Google Scholar
  62. 62.
    R. Konik, F. Lesage, A. W. W. Ludwig, H. Saleur, cond-mat/9806334.Google Scholar
  63. 63.
    L. Balents, cond-mat/9902159.Google Scholar
  64. 64.
    M. Fabrizio and A. O. Gogolin, Phys. Rev. B 51, 17827 (1995).Google Scholar
  65. 65.
    M. Fuentes, A. Lopez, E. Fradkin, and E. Moreno, Nucl. Phys. B 450, 603 (1995).CrossRefGoogle Scholar
  66. 66.
    A. O. Gogolin, A. A. Nersesyan and A. M. Tsvelik, Bosonization and Strongly Correlated Systems, Cambridge University Press, 1998.Google Scholar
  67. 67.
    U. Weiss, Quantum Dissipative Systems, Vol. 2 of Modern Condensed Matter Physics, World Scientific, Singapore, 1993; M. Sassetti and U. Weiss, Europhys. Lett. 27, 311 (1994).Google Scholar
  68. 68.
    U. Weiss, Solid State Comm. 100, 281 (1996).CrossRefGoogle Scholar
  69. 69.
    U. Weiss et al., Z. Phys. B 84, 471 (1991).CrossRefGoogle Scholar
  70. 70.
    A. O. Gogolin, A. A. Nersesyan, A. M. Tsvelik, and Lu Yu, Nucl. Phys. B 540, 705 (1999).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Oleg A. Starykh
    • 1
  • Dmitrii L. Maslov
    • 2
  • Wolfgang Häusler
    • 3
  • Leonid I. Glazman
    • 1
  • Glazman
    • 4
  1. 1.Department of Applied PhysicsYale University
  2. 2.Department of PhysicsUniversity of Florida
  3. 3.Institut für Theoretische Physik der Universität HamburgHamburgGermany
  4. 4.Theoretical Physics InstituteSchool of Physics and Astronomy University of MinnesotaSE Minneapolis

Personalised recommendations