Nonequilibrium Mesoscopic Conductors Driven by Reservoirs

  • Akira Shimizu
  • Hiroaki Kato
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 544)


In order to specify a nonequilibrium steady state of a quantum wire (QWR), one must connect reservoirs to it. Since reservoirs should be large 2d or 3d systems, the total system is a large and inhomogeneous 2d or 3d system, in which e-e interactions have the same strength in all regions. However, most theories of interacting electrons in QWR considered simplified 1d models, in which reservoirs are absent or replaced with noninteracting 1d leads. We first discuss fundamental problems of such theories in view of nonequilibrium statistical mechanics. We then present formulations which are free from such dificulties, and discuss what is going on in mesoscopic systems in nonequilibrium steady state. In particular, we point out important roles of energy corrections and non-mechanical forces, which are induced by a finite current.


Quantum Wire Fermi Liquid Projection Theory Luttinger Liquid Kubo Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, e.g., F. B. Callen, Thermodynamics and Introduction to Thermostatistics, 2nd ed. (Wiley, New York 1985) Chapter 14Google Scholar
  2. 2.
    D. Zubarev, Nonequilibrium Statistical Thermodynamics (Plenum, New York 1974)Google Scholar
  3. 3.
    W. Apel and T.M. Rice, Phys. Rev. B 26, 7063 (1982)Google Scholar
  4. 4.
    C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220 (1992)CrossRefGoogle Scholar
  5. 5.
    A. Furusaki and N. Nagaosa, Phys. Rev. B 47, 4631 (1993)Google Scholar
  6. 6.
    M. Ogata and H. Fukuyama, Phys. Rev. Lett. 73, 468 (1994)CrossRefGoogle Scholar
  7. 7.
    A. Shimizu and M. Ueda, Phys. Rev. Lett. 69, 1403 (1992)CrossRefGoogle Scholar
  8. 8.
    D.L. Maslov and M. Stone, Phys. Rev. B 52, R5539 (1995`) D.L. Maslov, another chapter of this book.Google Scholar
  9. 9.
    V.V. Ponomarenko, Phys. Rev. B 52, R8666 (1995)Google Scholar
  10. 10.
    A. Kawabata, J. Phys. Soc. Jpn. 65, 30 (1996)CrossRefGoogle Scholar
  11. 11.
    I. Sa. and H. J. Schulz, Phys. Rev. B52, R17040 (1995)Google Scholar
  12. 12.
    Y. Oreg and A. Finkel’stein, Phys. Rev. B54, R14265 (1996)Google Scholar
  13. 14.
    R. Landauer, IBM J. Res. Dev. 32, 306 (1988) M. Büttiker, ibid, 317CrossRefGoogle Scholar
  14. 16.
    S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950)CrossRefGoogle Scholar
  15. 17.
    J.M. Luttinger, J. Math. Phys. 4, 1154 (1963)CrossRefGoogle Scholar
  16. 18.
    F.D.M. Haldane, J. Phys. C 14, 2585 (1981)Google Scholar
  17. 19.
    N. Kawakami and S.-K. Yang, J. Phys. C3, 5983 (1991)Google Scholar
  18. 20.
    S. Tarucha, T. Honda and T. Saku, Solid State Commun. 94, 413 (1995)CrossRefGoogle Scholar
  19. 21.
    A. Shimizu, J. Phys. Soc. Jpn. 65, 1162 (1996)CrossRefGoogle Scholar
  20. 22.
    R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957)CrossRefGoogle Scholar
  21. 23.
    R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II, 2nd ed. (Springer, New York 1995) Chapter 4Google Scholar
  22. 24.
    M. Suzuki, Physica 51, 277 (1971)CrossRefGoogle Scholar
  23. 25.
    G. D. Mahan, Many-Particle Physics, 2nd ed. (Plenum, New York 1990) section 3.8AGoogle Scholar
  24. 26.
    E. Ott, Chaos in Dynamical Systems (Cambridge Univ., Cambridge 1993)Google Scholar
  25. 27.
    H. Nakano and M. Hattori, What is the ergodicity? (Maruzen, Tokyo, 1994) [in Japanese]Google Scholar
  26. 28.
    M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory (Cambridge Univ., Cambridge 1998)Google Scholar
  27. 29.
    A. Shimizu, unpublished.Google Scholar
  28. 31.
    T. Izuyama, Prog. Theor. Phys. 25, 964 (1961)CrossRefGoogle Scholar
  29. 34.
    A. Shimizu, M. Ueda and H. Sakaki, Jpn. J. App. Phys. Series 9, 189 (1993)Google Scholar
  30. 35.
    G.B. Lesovik, JETP Lett. 49, 514 (1989)Google Scholar
  31. 36.
    M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990)CrossRefGoogle Scholar
  32. 37.
    Y.P. Li, D.C. Tsui, J.J. Hermans, J.A. Simmons and G. Weimann, Appl. Phys. Lett. 57, 774 (1990)CrossRefGoogle Scholar
  33. 38.
    F. Liefrink, J.I. Dijkhuis, M.J.M. de Jong, L.W. Molenkamp and H. van Houten, Phys. Rev. B 49, 14066 (1994)Google Scholar
  34. 40.
    R. Haag, Local Quantum Physics 2nd ed. (Springer, New York 1996).Google Scholar
  35. 41.
    P. Nozières, Theory of Interacting Fermi Systems (W. A. Benjamin, Amsterdam 1964) Chapter 1Google Scholar
  36. 44.
    A. Shimizu and T. Miyadera, Physica B 249–251, 518 (1998)Google Scholar
  37. 45.
    H. Kato and A. Shimizu, unpublishedGoogle Scholar
  38. 49.
    A. Kawabata, unpublished.Google Scholar
  39. 50.
    For an approach similar (but different) to this, see au]A. Kawabata, J. Phys. Soc. Jpn. 67, 2430 (1998) and A. Kawabata, in the next chapter of this book.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Akira Shimizu
    • 1
  • Hiroaki Kato
    • 1
  1. 1.Department of Basic ScienceUniversity of TokyoTokyoJapan

Personalised recommendations