Towards a Geometric Theory of Hybrid Systems

  • Slobodan N. Simić
  • Karl Henrik Johansson
  • Shankar Sastry
  • John Lygeros
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1790)


The main purpose of this paper is to introduce a new framework for a global, geometric study of hybrid systems, and demonstrate its usefulness through its application to the analysis of the Zeno phenomenon and stability of hybrid equilibria.


Hybrid System Geometric Theory Piecewise Smooth Discrete Transition Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. B.
    M.S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. on Automatic Control, 43(4), 475–482, 1998zbMATHCrossRefMathSciNetGoogle Scholar
  2. GJ.
    J. Guckenheimer and S. Johnson, Planar hybrid systems, in Hybrid Systems and Autonomous Control Workshop, Cornell University, Ithaca, NY, 1994Google Scholar
  3. JELS.
    K. H. Johansson, M. Egerstedt, J. Lygeros and S. Sastry, On the Regularization of Zeno hybrid automata, Systems & Control Letters, 38, 141–150, 1999zbMATHCrossRefMathSciNetGoogle Scholar
  4. JLSM.
    K.H. Johansson, J. Lygeros, S. Sastry and M. Egerstedt: Simulation of Zeno hybrid automata, IEEE Conference on Decision and Control, Phoenix, AZ, 1999Google Scholar
  5. LJSE.
    J. Lygeros, K.H. Johansson, S. Sastry and M. Egerstedt, On the existence of executions of hybrid automata, in IEEE Conference on Decision and Control, Phoenix, AZ, 1999Google Scholar
  6. LLN.
    J. Lygeros et al., Hybrid Systems: Modeling, Analysis and Control, Lecture Notes and Class Projects for EE291E, Spring 1999, Mem. No. UCB/ERL M99/34Google Scholar
  7. LJZS.
    J. Lygeros, K. H. Johansson, J. Zhang, S. Simić: Dynamical systems revisited: Hybrid systems with Zeno executions, in preparationGoogle Scholar
  8. MH.
    A.N. Michel and B. Hu, Towards a stability theory of general hybrid dynamical systems, Automatica 35 (1999), 371–384zbMATHCrossRefMathSciNetGoogle Scholar
  9. PdM.
    J. Palis, Jr. and W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York, 1982zbMATHGoogle Scholar
  10. SJSL.
    S.N. Simić, K.H. Johansson, S. Sastry and J. Lygeros, Towards a geometric theory of hybrid systems, Technical Report UCB/ERL M00/3, University of California at Berkeley, December 1999Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Slobodan N. Simić
    • 1
  • Karl Henrik Johansson
    • 1
  • Shankar Sastry
    • 1
  • John Lygeros
    • 1
  1. 1.Department of Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeley

Personalised recommendations