Device Applications of Polymer-Nanocomposites

  • D. Y. Godovsky
Part of the Advances in Polymer Science book series (POLYMER, volume 153)


In recent years significant progress has been achieved in the synthesis of various types of polymer-nanocomposites and in the understanding of the basic principles which determine their optical, electronic and magnetic properties. As a result nanocomposite-based devices, such as light emitting diodes, photodiodes, photovoltaic solar cells and gas sensors, have been developed, often using chemically orientated synthetic methods such as soft lithography, lamination, spin-coating or solution casting.


Nanocomposite photovoltaic solar cells Polymer-nanocomposite light emitting diodes Magnetic media storage capacity Superparamagnetism p-n Nanojunctions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Su WP, Schreiffer JR, Heeger AJ (1980) Phys Rev B 224:2099CrossRefGoogle Scholar
  3. 3.
    Sariciftci S (ed) (1998) Semiconductor band versus exciton. PergamonGoogle Scholar
  4. 4.
    Roman LS, Mammo W, Pettersson LA, Andersson MR, Inganäs O (1998) Adv Mater 10:774CrossRefGoogle Scholar
  5. 5.
  6. 8.
    Godovsky D, Zaretsky D, Kundig A, Caseri W (1998) Proc ECOS 98, p 26Google Scholar
  7. 9.
    Tian Y, Newton T, Kotov N, Guldi D, Fendler J (1996) J Phys Chem 100:8927CrossRefGoogle Scholar
  8. 10.
    Trakhtenberg L, Gerasimov G, Grigor’ev E (1999) Russ J Phys Chem 73:209Google Scholar
  9. 11.
    Pomogailo AD (1997) Usp Khim 66:750 (in russian)Google Scholar
  10. 12.
    Gardenas TG, Munoz DC (1993) Macromol Chem 194:3377CrossRefGoogle Scholar
  11. 13.
    Olsen AW, Kafafi ZH (1993) J Am Chem Soc 113:7758CrossRefGoogle Scholar
  12. 14.
    Heilmann A, Kampfrath G, Hopfs V (1988) J Phys D 21:986Google Scholar
  13. 15.
    Gerasimov G, Sochilin V, Chvalun S, Volkova L, Kardash I (1996) Macromol Chem Phys 197:1387CrossRefGoogle Scholar
  14. 16.
    Alexandrova L, Sochilin V, Gerasimov G, Kardash I (1997) Polymer 38:271CrossRefGoogle Scholar
  15. 17.
    Brus L (1986) J Phys Chem 90:2555CrossRefGoogle Scholar
  16. 18.
    Wang Y, Herron N (1991) J Phys Chem 95:525CrossRefGoogle Scholar
  17. 19.
    Godovsky DY (1995) App Polym Sci 119:81Google Scholar
  18. 20.
    Varfolomeev AE, Godovsky DY, Zaretsky DF, Volkov A, Moskvina M (1995) JETP Lett 62:344Google Scholar
  19. 21.
    Godovsky D, Sukharev V, Volkov A, Moskvina M (1993) Phys Chem Solids 54:1613CrossRefGoogle Scholar
  20. 22.
    Shklovski BI, Efros AL (1979) Physics of doped semiconductors. Nauka, Moscow (in russian)Google Scholar
  21. 23.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789CrossRefGoogle Scholar
  22. 24.
    Godovsky D unpublished resultsGoogle Scholar
  23. 25.
    Yu G, Heeger AJ (1995) J Appl Phys 78:4510CrossRefGoogle Scholar
  24. 26.
    Godovsky D, Inganäs O Appl Phys Lett, to be publishedGoogle Scholar
  25. 27.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789CrossRefGoogle Scholar
  26. 28.
    Friend RH, Denton GJ, Halls JJM (1997) Synth Metals 84:463CrossRefGoogle Scholar
  27. 29.
    Burroughes JH, Forest SR (1990) Nature 347:539CrossRefGoogle Scholar
  28. 30.
    Granström M, Berggren M, Inganäs O (1995) Science 267:1479CrossRefGoogle Scholar
  29. 31.
    Colvin VL, Schlamp MC, Alivisatos AP (1994) Nature 370:354CrossRefGoogle Scholar
  30. 32.
    Berggren M, Gustafsson G, Inganäs O, Andersson MR, Wennerström O, Hjertberg T (1994) Nature 372:444CrossRefGoogle Scholar
  31. 33.
    Schlamp MC, Peng X, Alivisatos AP (1997) J Appl Phys 82:5837CrossRefGoogle Scholar
  32. 34.
    Pede D, Smela E, Johansson T, Johansson M, Inganäs O (1998) Adv Mat 10:233CrossRefGoogle Scholar
  33. 35.
    Bulovic V, Burrows PE, Garbuzov DZ, Forrest SR (1997) In: McConnell RD (ed) Future generation photovoltaic technologies. AIP Press, Woodbury, NY, pp 235, 404Google Scholar
  34. 36.
    Sariciftci NS, Braun D, Zhang C, Srdanov VI, Heeger AJ, Stucky G, Wudl F (1993) Appl Phys Lett 62:585CrossRefGoogle Scholar
  35. 37.
    Godovsky D, Varfolomeev A, Zaretsky D, Chandrakhati N, Kundig A, Caseri W, Smith P (1999) Adv Mat, in pressGoogle Scholar
  36. 38.
    Greenham NC, Peng XG, Alivisatos AP (1996) Phys Rev B 54:17628Google Scholar
  37. 39.
    Godovsky D, Varfolomeev A, Zaretsky D, Kundig A, Caseri W (1998) ECOS 98, Cadarache, France, Abstracts, p 21Google Scholar
  38. 40.
    Godovsky D, Volkov A, Sukharev V, Moskvina M (1994) Analyst 118:997CrossRefGoogle Scholar
  39. 41.
    Godovsky D (1993) PhD thesisGoogle Scholar
  40. 42.
    Trakhtenberg L, Gerasimov G, Grigoriev E (1996) In: Durig J, Klabunde K (eds) 2nd Intl Conf on Low Temperature Chemistry Book Mark Press, p 221Google Scholar
  41. 43.
    Sergeev G, Zagorsky V, Petrukhin M, Zavialov S, Grigor’ev E, Trakhtenberg L (1997) Anal Commun 34:113CrossRefGoogle Scholar
  42. 44.
    Gerasimov G, Grigor’ev E, Grigoriev A (1998) Chim Fiz 17:180Google Scholar
  43. 45.
    Godovsky D, Varfolomeev A, Kapystin G, Cherepanov V, Efremova D (1999) Adv Mat Opt Electron, in printGoogle Scholar
  44. 46.
    Morup S (1983) J. Magn Magn Mater 37:39CrossRefGoogle Scholar
  45. 47.
    Morup S, Tronc E (1994) Phys Rev Lett 72:3278CrossRefGoogle Scholar
  46. 48.
    Caseri W private communicationGoogle Scholar
  47. 49.
    Mirkin CA, Letsinger RL, Muck R, Storhoff JJ (1996) Nature 382:607CrossRefGoogle Scholar
  48. 50.
    Klein D, Roth R, Lim A, Alivisatos AP, McEuen PL (1997) Nature 389:699CrossRefGoogle Scholar
  49. 51.
    Spatz JP, Roesher A, Möller M (1996) Adv Mater 8:334CrossRefGoogle Scholar
  50. 52.
    Shenton W, Pum D, Sleytr U, Mann S (1997) Nature 389:585CrossRefGoogle Scholar
  51. 53.
    Klein D, Roth R, Lim A, Alivisatos P, Mceuen P (1997) Nature 389:609Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • D. Y. Godovsky
    • 1
  1. 1.Energy and Semiconductor DepartmentUniversity of OldenburgOldenburgGermany

Personalised recommendations