Advertisement

Polynucleotide Analogues

  • Man Jung Han
  • Ji Young Chang
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 153)

Abstract

Nucleic acids (DNAs and RNAs) are biopolymers, called polynucleotides as polymers of nucleotides. They have purine or pyrimidine bases and sugar rings connected by phosphodiester linkages. Polynucleotide analogues (PNAs) with modified polymer backbones and/or modified nucleic acid bases have been studied as model polymers for natural nucleic acids. In spite of their structural simplicity, PNAs have shown the property of base-stacking along the synthetic polymer backbones and even interacted with natural nucleic acids through base-pairing. Since biological activities of natural nucleic acids are indebted greatly to base-base interactions, PNAs are expected to have certain types of biological activities. In this article the preparation methods, properties, and potential applications of PNAs are discussed.

Keywords

Polynucleotide analogue Depurination Depyrimidination Polypeptide nucleic acid Catalytic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Watson JD, Crick FHC (1953) Nature 171:737CrossRefGoogle Scholar
  2. 2.
    Inaki Y (1992) Prog Polym Sci 17:515CrossRefGoogle Scholar
  3. 3.
    Takemoto K, Inaki Y (1987) In: Takemoto K, Inaki Y, Ottenbrite RM (eds) Functional monomers and polymers. Marcel Dekker, New York, p 149Google Scholar
  4. 4.
    Overberger CG, Inaki Y (1979) J Polym Sci Chem Ed 17:1739CrossRefGoogle Scholar
  5. 5.
    Overberger CG, Inaki Y, Nambu Y (1979) J Polym Sci Chem Ed 17:1759CrossRefGoogle Scholar
  6. 6.
    Overberger CG, Chang JY (1989) J Polym Sci Chem Ed 27:3589CrossRefGoogle Scholar
  7. 7.
    Han MJ, Cho TJ, Chang JY (1996) Polynucleotide analogues. In: Salamone JC (ed) Polymeric materials encyclopedia. CRC, Boca Raton, vol 8, p 6402Google Scholar
  8. 8.
    Han MJ, Park SM (1990) Macromolecules 23:5295CrossRefGoogle Scholar
  9. 9.
    Han MJ, Lee CW, Kim KH, Lee SH (1992) Macromolecules 25:3528CrossRefGoogle Scholar
  10. 10.
    Han MJ, Park SM, Park JY, Yoon SH (1992) Macromolecules 25:3534CrossRefGoogle Scholar
  11. 11.
    Han MJ, Chang YS, Park JY, Kim KH (1992) Macromolecules 25:6574CrossRefGoogle Scholar
  12. 12.
    Han MJ, Kim KS, Cho TJ, Kim KH, Chang JY (1994) Macromolecules 27:2896CrossRefGoogle Scholar
  13. 13.
    Han MJ, Park SW, Cho TJ, Chang JY (1996) Polymer 37:667CrossRefGoogle Scholar
  14. 14.
    Han MJ, Lee GH, Cho TJ, Park SK, Kim JH, Chang JY (1997) Macromolecules 30:1218CrossRefGoogle Scholar
  15. 15.
    Hafird MH, Jones AS (1968) J Chem Soc (c) 2667Google Scholar
  16. 16.
    Nielsen PE, Haaima G (1997) Chem Soc Rev 73Google Scholar
  17. 17.
    Overberger CG, Morishima Y (1980) J Polym Sci Polym Chem Ed 18:1247CrossRefGoogle Scholar
  18. 18.
    Ludwick AG, Overberger CG (1982) J Polym Sci Polym Chem Ed 20:2123CrossRefGoogle Scholar
  19. 19.
    Chu VP, Overberger CG (1986) J Polym Sci Polym Chem Ed 24:2657CrossRefGoogle Scholar
  20. 20.
    Lan M-J, Overberger CG (1987) J Polym Sci Polym Chem Ed 25:1909CrossRefGoogle Scholar
  21. 21.
    Overberger CG, Kikyotani S (1983) J Polym Sci Polym Chem Ed 21:525CrossRefGoogle Scholar
  22. 22.
    Ishikawa T, Inaki Y, Takemoto K (1978) Polym Bull 1:85Google Scholar
  23. 23.
    Anand N, Murthy NSRK, Naider F, Goodman M (1971) Macromolecules 4:564CrossRefGoogle Scholar
  24. 24.
    Overberger CG, Chang JY, Gunn VE (1989) J Polym Sci Chem Ed 27:99CrossRefGoogle Scholar
  25. 25.
    Overberger CG, Chang JY (1989) J Polym Sci Chem Ed 27:4013CrossRefGoogle Scholar
  26. 26.
    Scita T, Yamauchi K, Kinoshita M, Imoto M (1972) Macromol Chem 154:263CrossRefGoogle Scholar
  27. 27.
    Scita T, Yamauchi K, Kinoshita M, Imoto M (1973) Macromol Chem 164:15CrossRefGoogle Scholar
  28. 28.
    Han MJ, Kim KH, Cho TJ, Choi KB (1990) J Polym Sci Chem Ed 28:2719CrossRefGoogle Scholar
  29. 29.
    Han MJ, Choi KB, Chae JP, Hahn BS (1990) J Bioactive Compatible Polym 5:80CrossRefGoogle Scholar
  30. 30.
    Han MJ, Choi KB, Chae JP, Hahn BS (1990) Bull Korean Chem Soc 11:154Google Scholar
  31. 31.
    Morris CJOR (1976) Separation methods in biochemistry. Wiley, New YorkGoogle Scholar
  32. 32.
    Tinoco I Jr (1961) J Am Chem Soc 83:5047CrossRefGoogle Scholar
  33. 33.
    Rhodes W (1961) J Am Chem Soc 83:3609CrossRefGoogle Scholar
  34. 34.
    Bush CA (174) In: Ts’o POP (ed) Basic principles in nucleic acid chemistry. Academic, New York, vol II, chap 2Google Scholar
  35. 35.
    Browne DT, Eisinger J, Leonard NJ (1968) J Am Chem Soc 90:7302CrossRefGoogle Scholar
  36. 36.
    Inaki Y, Renge T, Kondo K, Takemoto K (1975) Makromol Chem 176:2683CrossRefGoogle Scholar
  37. 37.
    MacDonald JR, Echols WE, Price TR, Fox RB (1972) J Chem Phys 57:1746CrossRefGoogle Scholar
  38. 38.
    Iyata T, Ochiai H, Ueda K, Imamura A (1993) Macromolecules 26:6021CrossRefGoogle Scholar
  39. 39.
    Riley M, Mailing B, Charmberin MJ (1966) J Mol Biol 20:359CrossRefGoogle Scholar
  40. 40.
    Stevens CL, Felsenfeld G (1964) Biopolymers 2:293CrossRefGoogle Scholar
  41. 41.
    Zmudzka B, Bollum FJ, Shugar D (1969) J Mol Biol 46:169CrossRefGoogle Scholar
  42. 42.
    Blake RD, Massoulie J, Fresco JR (1967) J Mol Biol 30:291Google Scholar
  43. 43.
    Sequaris J-M, Koglin E, Valenta P, Nurnberg HW (1981) Ber Bunsen-Ges Phys Chem 85:512Google Scholar
  44. 44.
    Cotton TM (1988) In: Clark RJH, Hester RE (eds) Spectroscopy of surfaces. Wiley, New York, p 91Google Scholar
  45. 45.
    Brabec V, Niki K (1985) Biophys Chem 23:63CrossRefGoogle Scholar
  46. 46.
    Kaye H (1970) J Am Chem Soc 92:5777CrossRefGoogle Scholar
  47. 47.
    Akashi M, Okamoto T, Inaki Y, Takemoto K (1979) J Polym Sci Chem Ed 17:905CrossRefGoogle Scholar
  48. 48.
    Takemoto K, Tahara H, Yamada A, Inaki Y, Ueda N (1973) Makromol Chem 169:327CrossRefGoogle Scholar
  49. 49.
    Doel MT, Jones AS, Walker RT (1974) Tetrahedron 30:2755CrossRefGoogle Scholar
  50. 50.
    Buttrey JD, Jones AS, Walker RT (1975) Tetrahedron 31:73CrossRefGoogle Scholar
  51. 51.
    Draminski M, Pitha J (1978) Makromol Chem 179:2195CrossRefGoogle Scholar
  52. 52.
    Ishikawa T, Inaki Y, Takemoto K (1978) Polym Bull 1:215Google Scholar
  53. 53.
    Takemoto K, Yahara H, Yamada A, Inaki Y, Ueda N (1973) Makromolek Chem 169:327CrossRefGoogle Scholar
  54. 54.
    Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell, 3rd edn. Garland, New YorkGoogle Scholar
  55. 55.
    Uhlmann E, Peyman A (1990) Chem Rev 90:543CrossRefGoogle Scholar
  56. 56.
    Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Science 254:1497CrossRefGoogle Scholar
  57. 57.
    Egholm M, Buchardt O, Nielsen PE, Berg RH (1992) J Am Chem Soc 114:1895CrossRefGoogle Scholar
  58. 58.
    Egholm M, Buchardt O, Nielsen PE, Berg RH (1992) J Am Chem Soc 114:9677CrossRefGoogle Scholar
  59. 59.
    Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver D, Berg RH, Kim SK, Norden B, Nielsen PE (1993) Nature 365:566CrossRefGoogle Scholar
  60. 60.
    Kim SK, Nielsen PE, Egholm M, Buchardt O, Berg RH, Norden B (1993) J Am Chem Soc 115:6477CrossRefGoogle Scholar
  61. 61.
    Wittung P, Nielsen PE, Buchardt O, Egholm M, Norden B (1994) Nature 368:561CrossRefGoogle Scholar
  62. 62.
    Wittung P, Eriksson M, Lyng R, Nielsen PE, Nordén B (1995) J Am Chem Soc 117:10,167CrossRefGoogle Scholar
  63. 63.
    Wittung P, Nielsen PE, Nordén B (1997) J Am Chem Soc 119:3189CrossRefGoogle Scholar
  64. 64.
    Cantin M, Schütz R, Leumann CJ (1997) Tetrahedron Lett 38:4211CrossRefGoogle Scholar
  65. 65.
    Kosynkina L, Wang W, Liang YC (1994) Tetrahedron Lett 35:5173CrossRefGoogle Scholar
  66. 66.
    Goodnow RA Jr, Richou A, Tarn S (1997) Tetrahedron Lett 38:3195CrossRefGoogle Scholar
  67. 67.
    Goodnow RA Jr, Tarn S, Pruess DL, McComas WW (1997) Tetrahedron Lett 38:3199CrossRefGoogle Scholar
  68. 68.
    Howarth NM, Wakelin LPG (1997) J Org Chem 62:5441CrossRefGoogle Scholar
  69. 69.
    Kita Y, Uno T (1981) J Polym Sci Polym Chem Ed 19:477CrossRefGoogle Scholar
  70. 70.
    Suda Y, Inaki Y, Takemoto K (1984) J Polym Sci Polym Chem Ed 22:623CrossRefGoogle Scholar
  71. 71.
    Kunkel TA (1984) Proc Natl Acad Sci USA 81:1494CrossRefGoogle Scholar
  72. 72.
    Vousden KH, Bos JL, Marsheall CJ, Phillips DH (1986) Proc Natl Acad Sci USA 83:1222CrossRefGoogle Scholar
  73. 73.
    Lindahl T, Nyberg B (1972) Biochemistry 11:3610CrossRefGoogle Scholar
  74. 74.
    Lindahl T, Andersson A (1972) Biochemistry 11:3618CrossRefGoogle Scholar
  75. 75.
    Lindahl T (1982) Annu Rev Biochem 51:61CrossRefGoogle Scholar
  76. 76.
    Drake JW, Baltz RH (1976) Annu Rev Biochem 45:11CrossRefGoogle Scholar
  77. 77.
    Shaaper RN, Leob LA (1981) Proc Natl Acad Sci USA 78:1773CrossRefGoogle Scholar
  78. 78.
    Han MJ, Cho TJ, Lee GH, Yoo KS, Park YD, Chang JY (1999) J Polym Sci Chem Ed 37:3361CrossRefGoogle Scholar
  79. 79.
    Garrett ER, Seydel JK, Sharpen AJ (1966) J Org Chem 31:2199Google Scholar
  80. 80.
    Shapiro R, Danzig M (1972) Biochemistry 11:23CrossRefGoogle Scholar
  81. 81.
    Shapiro R, Danzig M (1973) Biochim Biophys Acta 319:5Google Scholar
  82. 82.
    Cech TR (1990) Angew Chem Int Ed Engl 29:759CrossRefGoogle Scholar
  83. 83.
    Altman S (1990) Angew Chem Int Ed Engl 29:749CrossRefGoogle Scholar
  84. 84.
    Uhlenbeck OC (1987) Nature 328:596CrossRefGoogle Scholar
  85. 85.
    Cech TR (1986) Sci Amer 255:76CrossRefGoogle Scholar
  86. 86.
    Zuag AJ, Cech TR (1986) Science 231:470CrossRefGoogle Scholar
  87. 87.
    McSwiggen JA, Cech TR (1989) Science 244:679CrossRefGoogle Scholar
  88. 88.
    Cech TR (1987) Science 236:1532CrossRefGoogle Scholar
  89. 89.
    Brehm SL, Cech TR (1983) Biochemistry 22:2390CrossRefGoogle Scholar
  90. 90.
    Zaug AJ, Been MD, Cech TR (1986) Nature 324:429CrossRefGoogle Scholar
  91. 91.
    Bass BL, Cech TR (1984) Nature 308:820CrossRefGoogle Scholar
  92. 92.
    Guerrier-Takada C, Haydock K, Allen L, Altman S (1986) Biochemistry 25:1509CrossRefGoogle Scholar
  93. 93.
    Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) Cell 35:849CrossRefGoogle Scholar
  94. 94.
    Baer M, Altman S (1985) Science 228:999CrossRefGoogle Scholar
  95. 95.
    Sribivasan A, Reddy EP, Dunn CY, Aaronson SA (1984) Science 223:285CrossRefGoogle Scholar
  96. 96.
    Herschlag D, Cech TR (1990) Nature 344:405CrossRefGoogle Scholar
  97. 97.
    Robertson DL, Joyce GF (1990) Nature 344:467CrossRefGoogle Scholar
  98. 98.
    Han MJ, Macromolecules (in press)Google Scholar
  99. 99.
    Han MJ, Yoo KS, Cho TJ, Chang JY, Cha YJ, Nam SH (1997) Chem Comm 163Google Scholar
  100. 100.
    Han MJ, Yoo KS, Kim KH, Lee GH, Chang JY (1997) Macromolecules 30:5408CrossRefGoogle Scholar
  101. 101.
    Nagae S, Miyamoto T, Inaki Y, Takemoto K (1989) Polym J 21:19CrossRefGoogle Scholar
  102. 102.
    Nagae S, Suda Y, Inaki Y, Takemoto K (1989) J Polym Sci Polym Chem Ed 27:2593CrossRefGoogle Scholar
  103. 103.
    Inaki Y, Ebisutani K, Takemoto K (1986) J Polym Sci Polym Chem Ed 24:3249CrossRefGoogle Scholar
  104. 104.
    Inaki Y, Takemoto K (1988) J Macromol Sci Chem 25:757CrossRefGoogle Scholar
  105. 105.
    Moghaddam MJ, Hozumi S, Inaki Y, Takemoto K (1989) Polym J 21:203CrossRefGoogle Scholar
  106. 106.
    Moghaddam MJ, Hozumi S, Inaki Y, Takemoto K (1988) J Polym Sci Polym Chem 26:3297CrossRefGoogle Scholar
  107. 107.
    Haines DS, Strauss KI, Gillespie DH (1991) J Cell Biochem 46:9CrossRefGoogle Scholar
  108. 108.
    Torrence PF, DeClercq E (1990) Pharmacol Ther 2:1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Man Jung Han
    • 1
  • Ji Young Chang
    • 2
  1. 1.Department of Molecular Science and TechnologyAjou UniversitySuwonKorea
  2. 2.School of Materials Science and Engineering, Hyperstructured Organic Materials Research CenterSeoul National UniversitySeoulKorea

Personalised recommendations