Skip to main content

Outlier Detection Using Replicator Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2454))

Abstract

We consider the problem of finding outliers in large multivariate databases. Outlier detection can be applied during the data cleansing process of data mining to identify problems with the data itself, and to fraud detection where groups of outliers are often of particular interest. We use replicator neural networks (RNNs) to provide a measure of the outlyingness of data records. The performance of the RNNs is assessed using a ranked score measure. The effectiveness of the RNNs for outlier detection is demonstrated on two publicly available databases.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. H. Ackley, G. E. Hinton, and T. J. Sejinowski. A learning algorithm for boltzmann machines. Cognit. Sci., 9:147–169, 1985.

    Article  Google Scholar 

  2. A. C. Atkinson. Fast very robust methods for the detection of multiple outliers. Journal of the American Statistical Association, 89:1329–1339, 1994.

    Article  MATH  Google Scholar 

  3. A. Bartkowiak and A. Szustalewicz. Detecting multivariate outliers by a grand tour. Machine Graphics and Vision, 6(4):487–505, 1997.

    Google Scholar 

  4. M. Breunig, H. Kriegel, R. Ng, and J. Sander. Lof: Identifying density-based local outliers. In Proc. ACM SIGMOD,Int. Conf. on Management of Data, 2000.

    Google Scholar 

  5. W. DuMouchel and M. Schonlau. Afast computer intrusion detection algorithm based on hypothesis testing of command transition probabilities. In Proc. 4th Int. Conf. on Knowledge Discovery and Data Mining, pages 189–193, 1998.

    Google Scholar 

  6. M. Ester, H. P. Kriegel, J. Sander, and X. Xu. Adensit y-based algorithm for discovering clusters in large spatial databases with noise. In Proc. KDD, pages 226–231, 1999.

    Google Scholar 

  7. T. Fawcett and F. Provost. Adaptive fraud detection. Data Mining and Knowledge Discovery Journal, 1(3):291–316, 1997.

    Article  Google Scholar 

  8. D. M. Hawkins. Identification of outliers. Chapman and Hall, London, 1980.

    MATH  Google Scholar 

  9. R. Hecht-Nielsen. Replicator neural networks for universal optimal source coding. Science, 269(1860–1863), 1995.

    Article  Google Scholar 

  10. E. Knorr and R. Ng. A unified approach for mining outliers. In Proc. KDD, pages 219–222, 1997.

    Google Scholar 

  11. E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. In Proc. 24th Int. Conf. Very Large Data Bases,VLDB, pages 392–403, 24-27 1998.

    Google Scholar 

  12. E. Knorr., R. Ng, and V. Tucakov. Distance-based outliers: Algorithms and applications. VLDB Journal: Very Large Data Bases, 8(3–4):237–253, 2000.

    Article  Google Scholar 

  13. George Kollios, Dimitrios Gunopoulos, Nick Koudas, and Stefan Berchtold. An efficient approximation scheme for data mining tasks. In ICDE, 2001.

    Google Scholar 

  14. A. S. Kosinksi. A procedure for the detection of multivariate outliers. Computational Statistics and Data Analysis, 29, 1999.

    Google Scholar 

  15. R. Ng and J. Han. Efficient and effiective clustering methods for spatial data mining. In Proc. 20th VLDB, pages 144–155, 1994.

    Google Scholar 

  16. S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In Proceedings of International Conference on Management of Data,A CM-SIGMOD, Dallas, 2000.

    Google Scholar 

  17. D. F. Swayne, D. Cook, and A. Buja. XGobi: interactive dynamic graphics in the X window system with a link to S. In Proceedings of the ASA Section on Statistical Graphics, pages 1–8, Alexandria, VA, 1991. American Statistical Association.

    Google Scholar 

  18. P. Sykacek. Equivalent error bars for neural network classifiers trained by bayesian inference. In Proc. ESANN, 1997.

    Google Scholar 

  19. G. Williams, I. Altas, S. Bakin, Peter Christen, Markus Hegland, Alonso Marquez, Peter Milne, Rajehndra Nagappan, and Stephen Roberts. The integrated delivery of large-scale data mining: The ACSys data mining project. In Mohammed J. Zaki and Ching-Tien Ho, editors, Large-Scale Parallel Data Mining, LNAI State-of-the-Art Survey, pages 24–54. Springer-Verlag, 2000.

    Google Scholar 

  20. G. Williams and Z. Huang. Mining the knowledge mine: The hot spots methodology for mining large real world databases. In Abdul Sattar, editor, Advanced Topics in Artificial Intelligence, volume 1342 of Lecture Notes in Artificial Intelligenvce, pages 340–348. Springer, 1997.

    Google Scholar 

  21. K. Yamanishi, J. Takeuchi, G. Williams, and P. Milne. On-line unsupervised outlier detection using finite mixtures with discounting learning algorithm. In Proceedings of KDD2000, pages 320–324, 2000.

    Google Scholar 

  22. T. Zhang, R. Ramakrishnan, and M. Livny. An efficient data clustering method for very large databases. In Proc. ACM SIGMOD, pages 103–114, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hawkins, S., He, H., Williams, G., Baxter, R. (2002). Outlier Detection Using Replicator Neural Networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2002. Lecture Notes in Computer Science, vol 2454. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46145-0_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-46145-0_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44123-6

  • Online ISBN: 978-3-540-46145-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics